Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339189

RESUMO

Nqo15 is a subunit of respiratory complex I of the bacterium Thermus thermophilus, with strong structural similarity to human frataxin (FXN), a protein involved in the mitochondrial disease Friedreich's ataxia (FRDA). Recently, we showed that the expression of recombinant Nqo15 can ameliorate the respiratory phenotype of FRDA patients' cells, and this prompted us to further characterize both the Nqo15 solution's behavior and its potential functional overlap with FXN, using a combination of in silico and in vitro techniques. We studied the analogy of Nqo15 and FXN by performing extensive database searches based on sequence and structure. Nqo15's folding and flexibility were investigated by combining nuclear magnetic resonance (NMR), circular dichroism, and coarse-grained molecular dynamics simulations. Nqo15's iron-binding properties were studied using NMR, fluorescence, and specific assays and its desulfurase activation by biochemical assays. We found that the recombinant Nqo15 isolated from complex I is monomeric, stable, folded in solution, and highly dynamic. Nqo15 does not share the iron-binding properties of FXN or its desulfurase activation function.


Assuntos
Frataxina , Ataxia de Friedreich , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Thermus thermophilus/metabolismo , Simulação de Dinâmica Molecular , Ferro/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ataxia de Friedreich/metabolismo
2.
J Struct Biol ; 215(4): 108023, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37652396

RESUMO

Tandem Repeat Proteins (TRPs) are a class of proteins with repetitive amino acid sequences that have been studied extensively for over two decades. Different features at the level of sequence, structure, function and evolution have been attributed to them by various authors. And yet many of its salient features appear only when looking at specific subclasses of protein tandem repeats. Here, we attempt to rationalize the existing knowledge on Tandem Repeat Proteins (TRPs) by pointing out several dichotomies. The emerging picture is more nuanced than generally assumed and allows us to draw some boundaries of what is not a "proper" TRP. We conclude with an operational definition of a specific subset, which we have denominated STRPs (Structural Tandem Repeat Proteins), which separates a subclass of tandem repeats with distinctive features from several other less well-defined types of repeats. We believe that this definition will help researchers in the field to better characterize the biological meaning of this large yet largely understudied group of proteins.


Assuntos
Proteínas , Sequências de Repetição em Tandem , Proteínas/genética , Proteínas/química , Sequências de Repetição em Tandem/genética , Sequência de Aminoácidos
3.
Bioinformatics ; 38(6): 1745-1748, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34954795

RESUMO

SUMMARY: Conformational changes in RNA native ensembles are central to fulfill many of their biological roles. Systematic knowledge of the extent and possible modulators of this conformational diversity is desirable to better understand the relationship between RNA dynamics and function. We have developed CoDNaS-RNA as the first database of conformational diversity in RNA molecules. Known RNA structures are retrieved and clustered to identify alternative conformers of each molecule. Pairwise structural comparisons between all conformers within each cluster allows to measure the variability of the molecule. Additional annotations about structural features, molecular interactions and biological function are provided. All data in CoDNaS-RNA is free to download and available as a public website that can be of interest for researchers in computational biology and other life science disciplines. AVAILABILITY AND IMPLEMENTATION: The data underlying this article are available at http://ufq.unq.edu.ar/codnasrna or https://codnas-rna.bioinformatica.org/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , RNA , Conformação Molecular , Software
4.
Bioinformatics ; 38(21): 4959-4961, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36111870

RESUMO

SUMMARY: A collection of conformers that exist in a dynamical equilibrium defines the native state of a protein. The structural differences between them describe their conformational diversity, a defining characteristic of the protein with an essential role in multiple cellular processes. Since most proteins carry out their functions by assembling into complexes, we have developed CoDNaS-Q, the first online resource to explore conformational diversity in homooligomeric proteins. It features a curated collection of redundant protein structures with known quaternary structure. CoDNaS-Q integrates relevant annotations that allow researchers to identify and explore the extent and possible reasons of conformational diversity in homooligomeric protein complexes. AVAILABILITY AND IMPLEMENTATION: CoDNaS-Q is freely accessible at http://ufq.unq.edu.ar/codnasq/ or https://codnas-q.bioinformatica.org/home. The data can be retrieved from the website. The source code of the database can be downloaded from https://github.com/SfrRonaldo/codnas-q.


Assuntos
Proteínas , Software , Proteínas/química , Conformação Proteica , Bases de Dados Factuais
5.
Bioinformatics ; 38(10): 2742-2748, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561203

RESUMO

MOTIVATION: After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions appeared and remain unanswered. The ensemble nature of proteins, for example, challenges the structural prediction methods because the models should represent a set of conformers instead of single structures. The evolutionary and structural features captured by effective deep learning techniques may unveil the information to generate several diverse conformations from a single sequence. Here, we address the performance of AlphaFold2 predictions obtained through ColabFold under this ensemble paradigm. RESULTS: Using a curated collection of apo-holo pairs of conformers, we found that AlphaFold2 predicts the holo form of a protein in ∼70% of the cases, being unable to reproduce the observed conformational diversity with the same error for both conformers. More importantly, we found that AlphaFold2's performance worsens with the increasing conformational diversity of the studied protein. This impairment is related to the heterogeneity in the degree of conformational diversity found between different members of the homologous family of the protein under study. Finally, we found that main-chain flexibility associated with apo-holo pairs of conformers negatively correlates with the predicted local model quality score plDDT, indicating that plDDT values in a single 3D model could be used to infer local conformational changes linked to ligand binding transitions. AVAILABILITY AND IMPLEMENTATION: Data and code used in this manuscript are publicly available at https://gitlab.com/sbgunq/publications/af2confdiv-oct2021. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas , Ligação Proteica , Conformação Proteica , Proteínas/química
6.
Nucleic Acids Res ; 49(D1): D361-D367, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33237329

RESUMO

The MobiDB database (URL: https://mobidb.org/) provides predictions and annotations for intrinsically disordered proteins. Here, we report recent developments implemented in MobiDB version 4, regarding the database format, with novel types of annotations and an improved update process. The new website includes a re-designed user interface, a more effective search engine and advanced API for programmatic access. The new database schema gives more flexibility for the users, as well as simplifying the maintenance and updates. In addition, the new entry page provides more visualisation tools including customizable feature viewer and graphs of the residue contact maps. MobiDB v4 annotates the binding modes of disordered proteins, whether they undergo disorder-to-order transitions or remain disordered in the bound state. In addition, disordered regions undergoing liquid-liquid phase separation or post-translational modifications are defined. The integrated information is presented in a simplified interface, which enables faster searches and allows large customized datasets to be downloaded in TSV, Fasta or JSON formats. An alternative advanced interface allows users to drill deeper into features of interest. A new statistics page provides information at database and proteome levels. The new MobiDB version presents state-of-the-art knowledge on disordered proteins and improves data accessibility for both computational and experimental users.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Algoritmos , Internet , Anotação de Sequência Molecular , Processamento de Proteína Pós-Traducional , Software
7.
Nucleic Acids Res ; 49(D1): D452-D457, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33237313

RESUMO

The RepeatsDB database (URL: https://repeatsdb.org/) provides annotations and classification for protein tandem repeat structures from the Protein Data Bank (PDB). Protein tandem repeats are ubiquitous in all branches of the tree of life. The accumulation of solved repeat structures provides new possibilities for classification and detection, but also increasing the need for annotation. Here we present RepeatsDB 3.0, which addresses these challenges and presents an extended classification scheme. The major conceptual change compared to the previous version is the hierarchical classification combining top levels based solely on structural similarity (Class > Topology > Fold) with two new levels (Clan > Family) requiring sequence similarity and describing repeat motifs in collaboration with Pfam. Data growth has been addressed with improved mechanisms for browsing the classification hierarchy. A new UniProt-centric view unifies the increasingly frequent annotation of structures from identical or similar sequences. This update of RepeatsDB aligns with our commitment to develop a resource that extracts, organizes and distributes specialized information on tandem repeat protein structures.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Sequências Repetitivas de Aminoácidos , Sequências de Repetição em Tandem , Ontologia Genética , Células HEK293 , Células HeLa , Humanos , Reprodutibilidade dos Testes , Estatística como Assunto , Interface Usuário-Computador
8.
Nucleic Acids Res ; 49(D1): D404-D411, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33305318

RESUMO

The Protein Ensemble Database (PED) (https://proteinensemble.org), which holds structural ensembles of intrinsically disordered proteins (IDPs), has been significantly updated and upgraded since its last release in 2016. The new version, PED 4.0, has been completely redesigned and reimplemented with cutting-edge technology and now holds about six times more data (162 versus 24 entries and 242 versus 60 structural ensembles) and a broader representation of state of the art ensemble generation methods than the previous version. The database has a completely renewed graphical interface with an interactive feature viewer for region-based annotations, and provides a series of descriptors of the qualitative and quantitative properties of the ensembles. High quality of the data is guaranteed by a new submission process, which combines both automatic and manual evaluation steps. A team of biocurators integrate structured metadata describing the ensemble generation methodology, experimental constraints and conditions. A new search engine allows the user to build advanced queries and search all entry fields including cross-references to IDP-related resources such as DisProt, MobiDB, BMRB and SASBDB. We expect that the renewed PED will be useful for researchers interested in the atomic-level understanding of IDP function, and promote the rational, structure-based design of IDP-targeting drugs.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Humanos , Ferramenta de Busca , Proteína Supressora de Tumor p53/química
9.
Nucleic Acids Res ; 48(D1): D269-D276, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31713636

RESUMO

The Database of Protein Disorder (DisProt, URL: https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the 'dark' proteome.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Ontologias Biológicas , Curadoria de Dados , Anotação de Sequência Molecular
10.
Brief Bioinform ; 20(1): 356-359, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28981583

RESUMO

Major scientific challenges that are beyond the capability of individuals need to be addressed by multi-disciplinary and multi-institutional consortia. Examples of these endeavours include the Human Genome Project, and more recently, the Structural Genomics (SG) initiative. The SG initiative pursues the expansion of structural coverage to include at least one structural representative for each protein family to derive the remaining structures using homology modelling. However, biological function is inherently connected with protein dynamics that can be studied by knowing different structures of the same protein. This ensemble of structures provides snapshots of protein conformational diversity under native conditions. Thus, sequence redundancy in the Protein Data Bank (PDB) (i.e. crystallization of the same protein under different conditions) is therefore an essential input contributing to experimentally based studies of protein dynamics and providing insights into protein function. In this work, we show that sequence redundancy, a key concept for exploring protein dynamics, is highly biased and fundamentally incomplete in the PDB. Additionally, our results show that dynamical behaviour of proteins cannot be inferred using homologous proteins. Minor to moderate changes in sequence can produce great differences in dynamical behaviour. Nonetheless, the structural and dynamical incompleteness of the PDB is apparently unrelated concepts in SG. While the first could be reversed by promoting the extension of the structural coverage, we would like to emphasize that further focused efforts will be needed to amend the incompleteness of the PDB in terms of dynamical information content, essential to fully understand protein function.


Assuntos
Bases de Dados de Proteínas/estatística & dados numéricos , Biologia Computacional/métodos , Biologia Computacional/estatística & dados numéricos , Cristalografia por Raios X , Genômica/estatística & dados numéricos , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Proteínas/genética , Proteômica/estatística & dados numéricos , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
11.
Hum Mutat ; 41(1): 81-102, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553106

RESUMO

Massive parallel sequencing technologies are facilitating the faster identification of sequence variants with the consequent capability of untangling the molecular bases of many human genetic syndromes. However, it is not always easy to understand the impact of novel variants, especially for missense changes, which can lead to a spectrum of phenotypes. This study presents a custom-designed multistep methodology to evaluate the impact of novel variants aggregated in the genome aggregation database for the HBB, HBA2, and HBA1 genes, by testing and improving its performance with a dataset of previously described alterations affecting those same genes. This approach scored high sensitivity and specificity values and showed an overall better performance than sequence-derived predictors, highlighting the importance of protein conformation and interaction specific analyses in curating variant databases. This study also describes the strengths and limitations of these structural studies and allows identifying residues in the globin chains more prone to tolerate substitutions.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Variação Genética , Hemoglobinas/genética , Alelos , Substituição de Aminoácidos , Biologia Computacional/métodos , Biologia Computacional/normas , Genótipo , Hemoglobinas/química , Humanos , Mutação com Perda de Função , Mutação , Fases de Leitura Aberta , Fenótipo , Sensibilidade e Especificidade , alfa-Globinas/química , alfa-Globinas/genética , Globinas beta/química , Globinas beta/genética
12.
PLoS Comput Biol ; 15(2): e1006473, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30763318

RESUMO

The dynamic nature of technological developments invites us to rethink the learning spaces. In this context, science education can be enriched by the contribution of new computational resources, making the educational process more up-to-date, challenging, and attractive. Bioinformatics is a key interdisciplinary field, contributing to the understanding of biological processes that is often underrated in secondary schools. As a useful resource in learning activities, bioinformatics could help in engaging students to integrate multiple fields of knowledge (logical-mathematical, biological, computational, etc.) and generate an enriched and long-lasting learning environment. Here, we report our recent project in which high school students learned basic concepts of programming applied to solving biological problems. The students were taught the Python syntax, and they coded simple tools to answer biological questions using resources at hand. Notably, these were built mostly on the students' own smartphones, which proved to be capable, readily available, and relevant complementary tools for teaching. This project resulted in an empowering and inclusive experience that challenged differences in social background and technological accessibility.


Assuntos
Biologia Computacional/educação , Educação/métodos , Aprendizagem Baseada em Problemas/métodos , Biologia Computacional/métodos , Currículo , Humanos , Aprendizagem , Instituições Acadêmicas , Smartphone , Software , Estudantes
13.
J Chem Inf Model ; 60(6): 3068-3080, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32216314

RESUMO

Proteins in their native states can be represented as ensembles of conformers in dynamical equilibrium. Thermal fluctuations are responsible for transitions between these conformers. Normal-modes analysis (NMA) using elastic network models (ENMs) provides an efficient procedure to explore global dynamics of proteins commonly associated with conformational transitions. In the present work, we present an iterative approach to explore protein conformational spaces by introducing structural distortions according to their equilibrium dynamics at room temperature. The approach can be used either to perform unbiased explorations of conformational space or to explore guided pathways connecting two different conformations, e.g., apo and holo forms. In order to test its performance, four proteins with different magnitudes of structural distortions upon ligand binding have been tested. In all cases, the conformational selection model has been confirmed and the conformational space between apo and holo forms has been encompassed. Different strategies have been tested that impact on the efficiency either to achieve a desired conformational change or to achieve a balanced exploration of the protein conformational multiplicity.


Assuntos
Proteínas , Conformação Proteica
14.
Nucleic Acids Res ; 46(D1): D471-D476, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29136219

RESUMO

The MobiDB (URL: mobidb.bio.unipd.it) database of protein disorder and mobility annotations has been significantly updated and upgraded since its last major renewal in 2014. Several curated datasets for intrinsic disorder and folding upon binding have been integrated from specialized databases. The indirect evidence has also been expanded to better capture information available in the PDB, such as high temperature residues in X-ray structures and overall conformational diversity. Novel nuclear magnetic resonance chemical shift data provides an additional experimental information layer on conformational dynamics. Predictions have been expanded to provide new types of annotation on backbone rigidity, secondary structure preference and disordered binding regions. MobiDB 3.0 contains information for the complete UniProt protein set and synchronization has been improved by covering all UniParc sequences. An advanced search function allows the creation of a wide array of custom-made datasets for download and further analysis. A large amount of information and cross-links to more specialized databases are intended to make MobiDB the central resource for the scientific community working on protein intrinsic disorder and mobility.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Anotação de Sequência Molecular , Software , Sequência de Aminoácidos , Sítios de Ligação , Conjuntos de Dados como Assunto , Ontologia Genética , Humanos , Internet , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Moleculares , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência
15.
Eur Biophys J ; 48(6): 559-568, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31273390

RESUMO

According to the generalized conformational selection model, ligand binding involves the co-existence of at least two conformers with different ligand-affinities in a dynamical equilibrium. Conformational transitions between them should be guaranteed by intramolecular vibrational dynamics associated to each conformation. These motions are, therefore, related to the biological function of a protein. Positions whose mutations are found to alter these vibrations the most can be defined as key positions, that is, dynamically important residues that mediate the ligand-binding conformational change. In a previous study, we have shown that these positions are evolutionarily conserved. They correspond to buried aliphatic residues mostly localized in regular structured regions of the protein like ß-sheets and α-helices. In the present paper, we perform a network analysis of these key positions for a large dataset of paired protein structures in the ligand-free and ligand-bound form. We observe that networks of interactions between these key positions present larger and more integrated networks with faster transmission of the information. Besides, networks of residues result that are robust to conformational changes. Our results reveal that the conformational diversity of proteins seems to be guaranteed by a network of strongly interconnected key positions rather than individual residues.


Assuntos
Proteínas/química , Proteínas/metabolismo , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Vibração
16.
BMC Bioinformatics ; 19(1): 27, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382320

RESUMO

BACKGROUND: Biocatalysis in organic solvents is nowadays a common practice with a large potential in Biotechnology. Several studies report that proteins which are co-crystallized or soaked in organic solvents preserve their fold integrity showing almost identical arrangements when compared to their aqueous forms. However, it is well established that the catalytic activity of proteins in organic solvents is much lower than in water. In order to explain this diminished activity and to further characterize the behaviour of proteins in non-aqueous environments, we performed a large-scale analysis (1737 proteins) of the conformational diversity of proteins crystallized in aqueous and co-crystallized or soaked in non-aqueous media. RESULTS: Using proteins' experimentally determined conformational diversity taken from CoDNaS database, we found that proteins in non-aqueous media display much lower conformational diversity when compared to the corresponding conformers obtained in water. When conformational diversity is compared between conformers obtained in different non-aqueous media, their structural differences are larger and mostly independent of the presence of cognate ligands. We also found that conformers corresponding to non-aqueous media have larger but less flexible cavities, lower number of disordered regions and lower active-site residue mobility. CONCLUSIONS: Our results show that non-aqueous media conformers have specific structural features and that they do not adopt extreme conformations found in aqueous media. This makes them clearly different from their corresponding aqueous conformers.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Solventes/química , Água/química , Biocatálise , Bases de Dados de Proteínas , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/metabolismo , Proteínas ras/química , Proteínas ras/metabolismo
17.
J Comput Chem ; 39(29): 2472-2480, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30298935

RESUMO

Epidermal growth factor receptor (EGFR) is a prototypical cell-surface receptor that plays a key role in the regulation of cellular signaling, proliferation and differentiation. Mutations of its kinase domain have been associated with the development of a variety of cancers and, therefore, it has been the target of drug design. Single amino acid substitutions (SASs) in this domain have been proven to alter the equilibrium of pre-existing conformer populations. Despite the advances in structural descriptions of its so-called active and inactive conformations, the associated dynamics aspects that characterize them have not been thoroughly studied yet. As the dynamic behaviors and molecular motions of proteins are important for a complete understanding of their structure-function relationships we present a novel procedure, using (or based on) normal mode analysis, to identify the collective dynamics shared among different conformers in EGFR kinase. The method allows the comparison of patterns of low-frequency vibrational modes defining representative directions of motions. Our procedure is able to emphasize the main similarities and differences between the collective dynamics of different conformers. In the case of EGFR kinase, two representative directions of motions have been found as dynamics fingerprints of the active conformers. Protein motion along both directions reveals to have a significant impact on the cavity volume of the main pocket of the active site. Otherwise, the inactive conformers exhibit a more heterogeneous distribution of collective motions. © 2018 Wiley Periodicals, Inc.


Assuntos
Simulação de Dinâmica Molecular , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Conformação Proteica
18.
Mol Phylogenet Evol ; 127: 859-866, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29953938

RESUMO

The analysis of evolutionary information in a protein family, such as conservation and covariation, is often linked to its structural information. Multiple sequence alignments of distant homologous sequences are used to measure evolutionary variables. Although high structural differences between proteins can be expected in such divergent alignments, most works linking evolutionary and structural information use a single structure ignoring the structural variability within protein families. The goal of this work is to elucidate the relevance of structural divergence when sequence-based measures are integrated with structural information. We found that inter-residue contacts and solvent accessibility undergo large variations in protein families. Our results show that high covariation scores tend to reveal residue contacts that are conserved in the family, instead of protein or conformer specific contacts. We also found that residue accessible surface area shows a high variability between structures of the same family. As a consequence, the mean relative solvent accessibility of multiple structures correlates better with the conservation pattern than the relative solvent accessibility of a single structure. We conclude that the use of comprehensive structural information allows a more accurate interpretation of the information computed from sequence alignments. Therefore, considering structural divergence would lead to a better understanding of protein function, dynamics, and evolution.


Assuntos
Evolução Molecular , Proteínas/química , Proteínas/genética , Sequência de Aminoácidos , Aminoácidos/genética , Área Sob a Curva , Sequência Conservada/genética , Filogenia , Domínios Proteicos , Proteínas Quinases/química , Alinhamento de Sequência , Solventes , Estatísticas não Paramétricas
19.
PLoS Comput Biol ; 13(2): e1005398, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28192432

RESUMO

Protein motions are a key feature to understand biological function. Recently, a large-scale analysis of protein conformational diversity showed a positively skewed distribution with a peak at 0.5 Å C-alpha root-mean-square-deviation (RMSD). To understand this distribution in terms of structure-function relationships, we studied a well curated and large dataset of ~5,000 proteins with experimentally determined conformational diversity. We searched for global behaviour patterns studying how structure-based features change among the available conformer population for each protein. This procedure allowed us to describe the RMSD distribution in terms of three main protein classes sharing given properties. The largest of these protein subsets (~60%), which we call "rigid" (average RMSD = 0.83 Å), has no disordered regions, shows low conformational diversity, the largest tunnels and smaller and buried cavities. The two additional subsets contain disordered regions, but with differential sequence composition and behaviour. Partially disordered proteins have on average 67% of their conformers with disordered regions, average RMSD = 1.1 Å, the highest number of hinges and the longest disordered regions. In contrast, malleable proteins have on average only 25% of disordered conformers and average RMSD = 1.3 Å, flexible cavities affected in size by the presence of disordered regions and show the highest diversity of cognate ligands. Proteins in each set are mostly non-homologous to each other, share no given fold class, nor functional similarity but do share features derived from their conformer population. These shared features could represent conformational mechanisms related with biological functions.


Assuntos
Modelos Químicos , Modelos Estatísticos , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Proteínas/ultraestrutura , Relação Estrutura-Atividade
20.
Eur J Haematol ; 100(6): 529-535, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29319890

RESUMO

Hemoglobinopathies are the most common autosomal recessive disorders and are mostly inherited in a recessive manner. However, certain mutations can affect the globin chain stability, leading to dominant forms of thalassemia. The aim of this work was the molecular and structural characterization of two heterozygous in-frame deletions, leading to ß-globin variants in pediatric patients in Argentina. The HBB gene of the probands and their parents was sequenced, and other markers of globin chain imbalance were analyzed. Several structural analyses were performed, and the effect of the mutations on the globin chain stability was analyzed. In Hb JC-Paz, HBB:c.29_37delCTGCCGTTA (p.Ala10_Thr12del), detected in an Argentinean boy, one α-helix turn is expected to be lost. In Hb Tavapy, HBB:c.182_187delTGAAGG (p.Val60_Lys61del), the deleted residues are close to distal histidine (His63) in the heme pocket. Both mutations are predicted to have a destabilizing effect. The development of computational structural models and bioinformatics algorithms is expected to become a useful tool to understand the impact of the mutations leading to dominant thalassemia.


Assuntos
Substituição de Aminoácidos , Hemoglobinas Anormais/genética , Fases de Leitura , Deleção de Sequência , Globinas beta/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Índices de Eritrócitos , Feminino , Hemoglobinopatias/sangue , Hemoglobinopatias/diagnóstico , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Hemoglobinas Anormais/química , Humanos , Masculino , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Globinas beta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA