Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 21(19): 8363-8369, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34606281

RESUMO

Studies of Ni-yttria-stabilized zirconia (YSZ) fuel electrode degradation mechanisms in solid oxide electrolysis cells (SOECs) are complicated by the different possible Ni-YSZ microstructures and compositions, and the variations in the H2/H2O ratio encountered in an electrolysis stack. Here we describe a life testing scheme aimed at providing survey results on degradation as a function of the H2O-H2 composition, with life tests carried out at five different steam contents from 90% to 10%. A Ni-YSZ-supported symmetric cell geometry is employed both with and without infiltrated nanoscale gadolinia-doped ceria (GDC). Impedance spectroscopy is utilized to observe changes in electrochemical characteristics during the life test, and a transmission-line-based equivalent circuit is used to model the data. Post-test electrode microstructures were observed. The results suggest that the GDC infiltrant reduces the electrode polarization resistance and provides more stable electrode polarization over a range of conditions.

2.
Adv Mater ; 36(25): e2307286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516842

RESUMO

Solid oxide fuel cells that operate at intermediate temperatures require efficient catalysts to enhance the inherently poor electrochemical activity of the composite electrodes. Here, a simple and practical electrochemical deposition method is presented for fabricating a PrOx overlayer on lanthanum strontium manganite-yttria-stabilized zirconia (LSM-YSZ) composite electrodes. The method requires less than four minutes for completion and can be carried out under at ambient temperature and pressure. Crucially, the treatment significantly improves the electrode's performance without requiring heat treatment or other supplementary processes. The PrOx-coated LSM-YSZ electrode exhibits an 89% decrease in polarization resistance at 650 °C (compared to an untreated electrode), maintaining a tenfold reduction after ≈400 h. Transmission line model analysis using impedance spectra confirms how PrOx coating improved the oxygen reduction reaction activity. Further, tests with anode-supported single cells reveal an outstanding peak power density compared to those of other LSM-YSZ-based cathodes (e.g., 418 mW cm-2 at 650 °C). Furthermore, it is demonstrated that multicomponent coating, such as (Pr,Ce)Ox, can also be obtained with this method. Overall, the observations offer a promising route for the development of high-performance solid oxide fuel cells.

3.
ChemSusChem ; 11(15): 2620-2627, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29808966

RESUMO

State-of-the-art cathodes for solid oxide fuel cells (SOFCs), such as (La,Sr)MnO3 -(Y2 O3 )0.08 (ZrO2 )0.92 (LSM-YSZ), suffer from sluggish oxygen reduction reaction (ORR) kinetics at reduced temperatures, leading to a significant decline in their performance. Herein, we report a tailored SOFC cathode with high ORR activity at intermediate temperatures using a simple but effective approach based on "electrochemical" surface modification. The proposed process involves chemically assisted electrodeposition (CAED) of a metal hydroxide (LaCo(OH)x ) on LSM-YSZ surfaces followed by in situ thermal conversion of LaCo(OH)x to perovskite-type LaCoO3 (LCO) nanoparticles during the SOFC startup. This method facilitates easy loading of the LCO nanoparticles with a precisely controlled morphology without the need for repeated deposition/annealing processes. An anode-supported SOFC with the LCO-tailored LSM-YSZ electrode exhibits a remarkably increased power density, approximately 180 % at 700 °C, compared with an SOFC with the pristine electrode as well as excellent long-term stability, which are attributed to the beneficial role of the CAED-derived LCO nanoparticles in enlarging the active areas for ORR and promoting oxygen adsorption/diffusion. This work demonstrates that controlled surface tailoring of the cathode by CAED could be an effective approach for improving the performance of SOFCs at reduced temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA