RESUMO
In this study, we investigated the effects of water-deficit stress on the leaf anatomical traits, physiological traits, and stem starch content in Quercus acutissima Carruth and Quercus serrata Murray by subjecting their seedlings to well-watered (WW) and water-deficit stress (WS) treatments. The water stress-induced changes in trichome density, trichome-to-stomata ratio, mesophyll thickness, vein density, vein distance, vein loopiness, vessel diameter, transpiration (E), stomatal conductance (gs), water use efficiency (WUE), and starch content were analyzed between two time points. While trichome density did not vary between treatments in Q. acutissima, it dramatically increased in Q. serrata (62.63-98.96 trichomes mm-2) at the final week. The WS-treated seedlings had a thicker palisade mesophyll (162.85-169.56 µm) than the WW-treated samples (118.56-132.25 µm) in both species. The vein density and loopiness increased significantly in the WS-treated Q. serrata seedlings. Small-sized vessels (10-50 µm) were more frequent in the WS than the WW in Q. serrata. The E, gs, WUE, and starch content declined significantly in the WS-treated seedlings compared with WW-treated samples in both species. Further, principal component analysis revealed significant relationships between anatomical and physiological traits, particularly in the WS-treated seedlings of Q. serrata. The coordinated changes in leaf anatomical traits, physiological traits, and stem starch content indicate an important role in the survival of Q. acutissima and Q. serrata seedlings in water-deficit stress environments, although Q. serrata may show higher survivability under prolonged water stress than Q. acutissima.
Assuntos
Quercus , Plântula , Desidratação , Secas , Folhas de Planta/fisiologia , Quercus/fisiologia , Plântula/fisiologia , Amido , TricomasRESUMO
Root biomass and distribution are influenced by abiotic factors, such as topography and soil physicochemical properties, determining belowground productivity. Hence, we investigated the variation in root biomass and vertical root distribution based on the topography, soil physicochemical properties, and tree influence index, and their relationships, across soil depths (0-10 cm, 10-20 cm, and 20-30 cm) and topographical gradients in a warm-temperate forest in Mt. Duryun, Republic of Korea. Two contrasting research sites were established: a lower slope oriented at ≤3° and an upper slope with a slope of 30°. Each site comprised eleven 400 m2 sampling plots from which root samples from various diameter classes (<2 mm, 2-5 mm, 5-10 mm, and >10 mm) were collected. While the bulk density increased with soil depth in the lower slope, the organic matter, available phosphorus, Ca2+, and Mg2+ showed a reversed pattern. Linear mixed-effects models generally revealed significant negative correlations between root biomass and soil pH, total nitrogen, and cation exchange capacity, particularly in small roots (ßstd = -1.03 to -1.51) and coarse roots (ßstd = -6.30). Root biomass exhibited a 10-15% increase in the upper slope compared to the lower slope, particularly in fine (median = 52.0 g m2-65.64 g m2) and medium roots (median = 56.04 g m2-69.52 g m2) at a 0-20 cm soil depth. While no significant correlation between root biomass and the tree influence index was found on the lower slope, a different pattern was found on the upper slope. Our results indicate that the variation in root biomass and distribution can also be explained by the differences in the soil environment and topographical positions.
RESUMO
Urbanization and associated forest conversions have given rise to a continuum of native (forest fragments) and modified (artificial grasslands and perennial ecosystems) land-use types. However, little is known about how these shifts affect soil and fine-root compartments that are critical to a functioning carbon and nutrient circulation system. In this study, soil physicochemical properties, fine-root mass, and vertical distribution patterns were investigated in four representative urban land-use types: grassland (ZJ), perennial agroecosystem (MP), broadleaf deciduous forest patch (QA), and coniferous evergreen forest patch (PD). We quantified the fine-root mass in the upper 30 cm vertical profile (0-30 cm) and at every 5 cm depth across three diameter classes (<2 mm, 2-5 mm, and <5 mm). Soil physicochemical properties, except for phosphorus, nitrogen, ammonium nitrogen, and sodium cations, varied significantly across land-use types. The total root biomass (<5 mm) decreased in the order of QA (700.3 g m-2) > PD (487.2 g m-2) > ZJ (440.1 g m-2) > MP (98.3 g m-2). The fine-root mass of ZJ and MP was correlated with soil nutrients, which was attributed to intensive management operations, while the fine-root mass of QA and PD had a significant relationship with soil organic matter due to the high inputs from forest litter. Very fine roots (<2 mm) presented a distinct decremental pattern with depth for all land-use types, except for MP. Very fine roots populated the topmost 5 cm layer in ZJ, QA, and PD at 52.1%, 49.4%, and 39.4%, respectively. Maintaining a woody fine-root system benefits urban landscapes by promoting soil stabilization, improving ground infiltration rates, and increasing carbon sequestration capacity. Our findings underscore the importance of profiling fine-root mass when assessing urban expansion effects on terrestrial ecosystems.
RESUMO
Background: The impacts of climate change, such as increased soil dryness and nutrient deficiency, highlight the need for environmentally sustainable restoration of forests and groundwater resources. However, it is important to consider that extensive afforestation efforts may lead to a depletion of groundwater supply due to higher evapotranspiration rates, exacerbating water scarcity issues. Consequently, we conducted a study to examine how the fast-growing tree species Populus sibirica (Horth ex Tausch) and Ulmus pumila (L.) respond morpho-physiologically to varying watering regimes and types of fertilizers, aiming to better understand their specific water and nutrient requirements. Methods: We used two-year-old nursery-growth seedlings (N = 512) of P. sibirica and U. pumila with initial root collar diameter (RCD) and the height of 0.51 ± 0.02 mm and 68 ± 2.94 cm and 0.33 ± 0.01 mm and 51 ± 1.14 cm, respectively. The leaf area (LA), specific leaf area (SLA), chlorophyll concentration, stomatal conductance (gs), chlorophyll fluorescence, and predawn and midday leaf water potential were measured across treatments. Four different irrigation regimes and two different fertilizer types were applied: no irrigation (control, 0 L h-1), 2 L h-1 = 0.25 mm m-2, 4 L h-1 = 0.5 mm m-2, 8 L h-1 = 1.0 mm m-2 and 120 g and 500 g tree-1 of NPK and compost (COMP). Twelve plots (600 m2) were established in the study site for each species and treatments. Results: During the first growing season (2021), the LA of P. sibirica was larger in the 4-8 L h-1 without fertilizer, but it was smaller in the 4 L h-1+ COMP during the second growing season (2022). The 2 L h-1 without fertilizer and 2 L h-1 + NPK had larger LA compared with the control (CONT) for the first and second growing seasons, respectively, for U. pumila. P. sibirica seedlings at 4 L h-1 without fertilizer had the highest SLA for 2021 and at 2 L h-1 + NPK for 2022, whereas CONT and 4 L h-1 had the highest SLA than the other treatments for 2021 and 2022 growing seasons, respectively, for U. pumila. The chlorophyll concentration of P. sibirica seedlings in the first year was generally higher in CONT, while the 2 L h-1 without any fertilizer yielded a significantly higher chlorophyll concentration of U. pumila. Chlorophyll fluorescence parameters (PIABS and Fm) were generally lower in CONT with/without NPK or COMP for both species. The CONT with NPK/COMP generally had a higher gs compared with the other treatments in both experimental periods for U. pumila, whereas CONT and 2 L h-1+ NPK-treated P. sibirica seedlings had a significantly greater gs during the first year and second year, respectively. The predawn and midday leaf water potentials of both species were generally the lowest in CONT, followed by 2 L h-1+ NPK/COMP during the first growing season, but a different pattern was observed during the second growing season. Overall, the morpho-physiological traits of the two species were affected by watering and fertilizer treatments, and the magnitude of the effects varied depending on growing season, amount of irrigation, and fertilizer type, and their interactions.
Assuntos
Populus , Ulmus , Fertilizantes , Folhas de Planta , Clorofila , Água/fisiologiaRESUMO
It is crucial to evaluate the effects of thinning on litterfall production, soil chemical properties, and fine root dynamics when implementing thinning as a silvilcultural technique to enhance tree growth and timber yield in Pinus koraiensis plantations. Thus, we determined the 10-year effects (2007-2017) of different thinning intensities on litterfall production, soil chemical properties, and fine root biomass and necromass within a P. koraiensis plantation in South Korea. The soil chemical parameters and fine root biomass and necromass were also compared across three soil depths (0-10, 10-20, and 20-30 cm). Three thinning treatments were employed: no thinning (CON), light thinning (32% removed, LT), and heavy thinning (64% removed, HT). Results revealed that litterfall was consistent across all thinning treatments, but broadleaf species had considerably higher litterfall production at HT stands than at CON/LT stands. Soil chemical properties, except exchangeable K+, were generally lower at LT stands, particularly at a depth of 20-30 cm soil. After ten years, there was a decrease in fine root biomass and necromass with increasing soil depth. Over 80% of fine roots were found in the upper layer (0-20 cm), while very fine roots (0-1 mm) consisted mainly of 47% pine and 53% other species and were concentrated in the 0-10 cm soil depth in HT. In conclusion, different thinning intensities had diverse effects on the parameters measured within the plantation. Future studies can explore how the effects of thinning intensities on litterfall production, soil chemistry, and fine root dynamics affect species diversity, carbon storage, and understory vegetation in P. koraiensis plantations.
RESUMO
The identification of forest community types is essential for prioritizing choices and targets in species and community conservation purposes amid climate change impacts on forest community dynamics. Here, we determined the tree species composition, species diversity, and the forest community types across contrasting topographic and edaphic conditions in Htamanthi Wildlife Sanctuary (HWS), Myanmar. All tree species with diameter at breast height (DBH) ≥10 cm were recorded in 66 plots (625 m2), from which the species diversity, density, frequency, dominance, and importance value (IV) of each tree species were measured. The soil hardness (Hd), bulk density (BD), moisture content (MC), organic matter content (OM), texture, pH, total N, and available P, K, Ca, Na, and Mg concentrations were also analyzed. The elevation (ELV) and slope (SLP) were also measured as the topographic factors. Cluster analysis resulted in five distinct forest communities and the soil Ca, Mg, clay proportion, soil hardness, and elevation were the major influencing factors. The species diversity in HWS ranged from low to very high relative values, with 209 tree species belonging to 119 genera and 55 families. Identification of these community types and understanding the diversity levels and major factors influencing the community structure may play a key role in the planning, prioritization, and implementation of species and community conservation strategies amid the unpredictable impacts of climate change on forest community dynamics.
RESUMO
Poor seedling establishment and growth can be a result of the limitation of light and soil resources in the forest understory. Here, we investigate the interacting effects of stand and soil characteristics on the seedling growth of deciduous species (Fraxinus rhynchophylla and Zelkova serrata) and evergreen species (Pinus koraiensis) through a 3-year intersite experiment in two contrasting forest stands. Seedlings were grown in both oak and pine stands using two different soil types, i.e., gray-brown forest soil (GB) and red-yellow forest soil (RY). Soil physicochemical properties, light intensity, tree-seedling height, root-collar diameter (RCD), and biomass growth were analyzed between two stands and/or soil types. Light availability was generally more abundant in the pine stand (mean: 1074.08 lx or 20.25%) than the oak stand (mean: 424.33 lx or 9.20%) throughout the year. The height and RCD growth of fast-growing and deciduous F. rhynchophylla and Z. serrata were higher in the pine than in the oak stand, particularly in GB soil. The growth of the slow-growing and evergreen P. koraiensis was not affected by the forest stand, except for its higher root growth in the oak stand and RY soil. Therefore, abundant light availability can enhance the growth and seedling establishment of F. rhynchophylla and Z. serrata in the pine-stand understory. Contrarily, P. koraiensis may be planted in the understory regardless of light condition, but with a slower growth rate.
RESUMO
Wood ash generated as a by-product of biomass combustion can be a sustainable and reasonable approach to counteract acidification and correct nutrient deficiency in forest soils. We investigated the influence of wood ash (WA) and combined WA + N (nitrogen) on soil chemical properties, growth and foliar nutrients of Zelkova serrata and their potential as a soil amender across different soil types. We applied four levels of WA (0, 5, 10, and 20 Mg ha-1) and two levels of N fertilizer (0 and 150 kg ha-1) across three different soil types: landfill saline (LS) soil, forest infertile (FI) soil, and forest acidic (FA) soil. The WA generally improved soil pH, organic matter, available P, exchangeable cations (K+, Na+, Ca2+, and Mg2+), and EC of the three soils, but its ameliorating and neutralizing effects were predominant in FA soil. N fertilizer was more effective in improving plant growth, especially for biomass production in LS and FI soils. WA application significantly increased biomass production when it was applied over 5 Mg ha-1 in FA soil, but higher dose rate of WA (i.e. 20 Mg ha-1) seems to pose negative effects. Foliar P, K, and Ca concentrations also tended to increase with the increasing amount of WA. Therefore, lower dosage of WA without N can be applied as a soil amender to counteract forest soil acidity and improve plant growth and foliar nutrient concentration, whereas N fertilizer without WA can be added to correct nutrient soil deficiencies in landfill and infertile soils. This study should enhance our understanding of WA as a sustainable and reasonable approach to counteract acidification and correct nutrient deficiency in forest soils.
RESUMO
In this study, the interacting effects of shade and planting methods on the growth and competitive ability of two understory plants Heracleum moellendorffii Hance and Adenophora divaricata Franch. & Sav. were investigated under different soil moisture and nutrient conditions. One-year-old seedlings were subjected to different light levels (0%, 35%, and 55% shade) and planting methods (monoculture and mixed) under contrasting soil moisture (1.2 L/m2 and 2.3 L/m2 of water) and soil nutrient conditions (unfertilized and fertilized). Here, shading significantly improved the height growth of H. moellendorffii (10-20 cm increase) in unfertilized and fertilized plots and at high soil moisture conditions. Contrarily, A. divaricata seedlings planted singly at full sunlight yielded a higher aboveground biomass growth (8-17 g plant-1), compared with those shaded and intercropped seedlings (0.9-3.9 g plant-1). The increased competitiveness of H. moellendorffii suppressed the growth of A. divaricata across different light conditions when planted together. The amount of light, soil moisture, and nutrients and their interactions significantly affected the growth of the seedlings, resulting in asymmetric interspecific competition between the two species. Results provide us with a better understanding of the environmental factors affecting plant growth for forest farming in the understory.
RESUMO
Desertification of the semi-arid steppe of Mongolia is advancing very rapidly, motivating afforestation efforts. The "Green Belt" joint project (Government of Mongolia and Republic of Korea), which aims to mitigate soil degradation and develop agroforestry activities through the planting of a forest shelterbelt, is one such response. In these plantations, tree growth has been supported by different watering regimes (no watering, 2, 4, and 8 L h-1) and by two types of soil fertilization (NPK and Compost). The present paper analyses the effect of these techniques on soil chemistry and root biomass partitioning of Populus sibirica (Horth ex Tausch) and Ulmus pumila (L.) tree species. In July 2019, at the plantation site in Lun Soum, Tuv province (Mongolia), six trees were excavated by hand in each treatment, the root system was divided into taproot and five diameter classes (0-2; 2-5; 5-10; 10-20; > 20 mm), and the biomass was measured. Soil organic matter, macronutrients, and pH were also measured. The addition of fertilizers in the long-term did not enhance the soil chemical properties. The build-up of root biomass in both species correlated positively with increasing levels of the watering, while the application of fertilizers led to root growth suppression. For most of the root classes and both species, an irrigation level of 4 L h-1 was sufficient to yield the highest biomass and could be recommended for afforesting the semi-arid steppe of Mongolia. The root biomass of P. sibirica was more dependent on the watering regimes and of U. pumila was more negatively influenced by the application of fertilizers, indicating that U. pumila, due to the its lower water need, could be suitable for afforesting semi-arid environments. Our experiments suggest that afforestation practices in the semi-arid steppe of Mongolia should be supported by a prior analysis of plants' needs, soil type, dose, and type of fertilizers to be applied. Knowledge of the root response to the supporting techniques is necessary for choosing the best one for the plantation and, thus, to develop a sustainable and successful strategy to restore these degraded lands.
RESUMO
A better understanding of plant drought responses is essential to improve plant water use efficiency, productivity, and resilience to ever-changing climatic conditions. Here, we investigated the growth, morpho-anatomical, physiological, and biochemical responses of Quercus acutissima Carruth., Quercus serrata Murray, and Betula schmidtii Regel to progressive water-stress. Seedlings were subjected to well-watered (WW) and water-stressed (WS) conditions while regularly monitoring the soil volumetric water content, stem diameter (SD), height, biomass, stomatal conductance (gs), intercellular CO2 concentration (Ci), and leaf relative water content (RWC). We also investigated the variation in stomatal pore (SP) area, specific leaf area (SLA), root xylem vessel diameter (VD), and total soluble sugar (TSS) concentration between treatments. After 2 months, WS significantly suppressed SD growth of Q. acutissima and B. schmidtii but had no impact on Q. serrata. Total biomass significantly declined at WS-treated seedlings in all species. WS resulted in a smaller SLA than WW in all species. The SP of WS-treated seedlings of Q. acutissima and B. schmidtii significantly decreased, whereas it increased significantly with time in Q. serrata. Larger vessels (i.e., >100 to ≤ 130) were more frequent at WS for Q. acutissima and B. schmidtii, whereas smaller vessels (i.e., >40 to ≤ 90) were more frequent at WS than at WW for Q. serrata after 8 weeks. Tylosis was more frequent at WS than WW for Q. serrata and B. schmidtii at eighth week. WS seedlings showed lower gs, Ci, and RWC compared with WW-treated ones in Q. acutissima and B. schmidtii. TSS concentration was also higher at WS-treated seedlings in two Quercus species. Overall, principal component analysis (PCA) showed that SLA and SP are associated with WS seedlings of Q. serrata and B. schmidtii and the tylosis frequency, TSS, and VD are associated with WS seedlings of Q. acutissima. Therefore, water-stressed plants from all species responded positively to water stress with increasing experimental duration and stress intensity, and that is largely explained by morpho-anatomical traits and soluble sugar concentration. The present study should enhance our understanding of drought-induced tree growth and short-term tree-seedling responses to drought.
RESUMO
Desertification is impeding the implementation of reforestation efforts in Mongolia. Many of these efforts have been unsuccessful due to a lack of technical knowledge on water and nutrient management strategies, limited financial support, and short-lived rainfall events. We investigated the effects of irrigation and fertilization on the morphophysiological traits of Populus sibirica Hort. Ex Tausch and Ulmus pumila L. and to suggest irrigation and fertilization strategies for reforestation. Different irrigation and fertilizer treatments were applied: no irrigation, 2 L h-1, 4 L h-1, and 8 L h-1 of water; no fertilizer, 2 L h-1 + NPK, 4 L h-1 + NPK, and 8 L h-1 + NPK; and no compost, 2 L h-1 + compost, 4 L h-1 + compost, and 8 L h-1 + compost. The leaf area (LA) and specific leaf area (SLA) of both species responded positively to 4 and 8 L h-1. Results also showed that the addition of either NPK or compost to 4 or 8 L h-1 irrigation resulted in a higher LA, SLA, and leaf biomass (LB). Total chlorophyll content decreased with irrigation in both species. The same pattern was detected when a higher amount of irrigation was combined with fertilizers. Lastly, we found that both diurnal and seasonal leaf water potential of plants grown in 4 or 8 L h-1 were significantly higher than those of plants grown in control plots. Therefore, 4 or 8 L h-1 with either NPK or compost has shown to be the optimal irrigation and fertilization strategy for the species in an arid and semiarid region of Mongolia. Results should provide us with a better understanding of tree responses to varying amounts of irrigation with or without fertilizer in pursuit of sustainable forest management in arid and semiarid ecosystems.
RESUMO
Stand growth and developmental processes were investigated in Pinus densiflora Siebold et Zucc. stands of different ages in the central eastern region of Korea. Stands were inventoried and five trees per stand were sampled for stem analysis, age estimation, and growth analysis. More than 80% of sampled trees in a stand were established within 3-5 years, and most stands had a single cohort structure. The initial growth of pine seedlings was slow, but the height growth accelerated beyond 2-3 m height, 5-10 years after establishment. Linear growth was maintained until 10-12 m height, at which suppressed trees fell behind and might die out. The young stand was composed of pure pines, while few pine seedlings and saplings were found in the understory of older stands. The peak of diameter growth rate occurred around 5-15 years after tree establishment, implying that competition begins during that period. The pine stand development follows four stages: (1) the young stage when the growth rate increases and peaks; (2) the height competition stage when trees focus on height growth for light while maintaining a narrow DBH and height distribution; (3) the differentiation stage when suppressed trees die out, and the DBH distribution becomes wider; and (4) the mature stage when stands have a multi-canopy structure with a wide DBH and height distribution, while the understory is dominated by other tree species. The changes in growth rates and stand structure through forest development would be implemented to predict alterations of above-ground carbon sequestration rates.
Assuntos
Pinus/crescimento & desenvolvimento , Geografia , Coreia (Geográfico) , Pinus/anatomia & histologia , Plântula/crescimento & desenvolvimentoRESUMO
Windstorm is one of the destructive natural disturbances, but the scale-link extent to which recurrent windstorms influenced forests ecosystems is poorly understood in a changing climate across regions. We reviewed the synergistic impacts of windstorms on forests and assessed research trends and methodological approaches from peer-reviewed articles published from 2000 to 2020 in tropical (TRF), subtropical (SUF), and temperate (TEF) forests/zones, based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Overall, the majority of the reviewed studies were conducted in TRF (i.e., 40%), intermediate in SUF (i.e., 34%), and the lowest in TEF (i.e., 26%). Among the four levels of biological organization, the species-population and community-ecosystem levels had the highest number of study cases, while the molecular-cellular-individual and landscape levels had the lowest study cases in all forest types. Most of the articles reviewed dealt largely on tree mortality/survival and regeneration/succession for TRF, tree mortality/survival and species composition/richness/diversity for SUF, and stem density, gap dynamics, and regeneration/succession for TEF. However, research on the effects of windstorms on mycorrhizal symbioses, population genetics, and physiological adaptation, element fluxes via litterfall, litter decomposition, belowground processes, biological invasion, and tree health are less common in all forest types. Further, most of the studies were conducted in permanent plots but these studies mostly used observational design, while controlled studies are obviously limited. Consequently, more observational and controlled studies are needed on the topic reviewed, particularly studies at the molecular-cellular-individual and landscape levels, to help inform forest management decision-making about developing sustainable and resilient forests amid climate change.
RESUMO
Liriope platyphylla (Liliaceae), a medical plant distributed mainly in China, Taiwan, and Korea, has been used traditionally for the treatment of cough, sputum, asthma, and neurodegenerative diseases. The present study involved the metabolic profiling of this plant and reports spicatoside A accumulation in four different varieties of L. platyphylla (Cheongyangjaerae, Seongsoo, Cheongsim, and Liriope Tuber No. 1) using HPLC and gas chromatography time-of-flight mass spectrometry (GCâ»TOFMS). A total of 47 metabolites were detected in the different cultivars using GCâ»TOFMS-based metabolic profiling. The resulting data were subjected to principal component analysis (PCA) for determining the whole experimental variation, and the different cultivars were separated by score plots. Furthermore, hierarchical clustering, Pearson's correlation, and partial least-squares discriminant analyses (PLS-DA) were subsequently performed to determine significant differences in the various metabolites of the cultivars. The HPLC data revealed that the presence of spicatoside A was detected in all four cultivars, with the amount of spicatoside A varying among them. Among the cultivars, Liriope Tuber No. 1 contained the highest amount of spicatoside A (1.83 ± 0.13 mg/g dry weight), followed by Cheongyangjaerae (1.25 ± 0.01 mg/g dry weight), Cheongsim (1.09 ± 0.04 mg/g dry weight), and Seongsoo (1.01 ± 0.02 mg/g dry weight). The identification of spicatoside A was confirmed by comparing the retention time of the sample with the retention time of the standard. Moreover, the Cheongsim cultivar contained higher levels of phenolic compounds-including vanillic acid, quinic acid, gallic acid, chlorogenic acid, caffeic acid, and benzoic acid-than those of the other two cultivars. On the other hand, the levels of amino acids were higher in the Seongsoo cultivar. Therefore, this study may help breeders produce new varieties with improved nutraceutical and nutritional qualities.
RESUMO
Current understanding of litterfall and fine root dynamics in temperate forests is limited, even though these are the major contributors to carbon and nutrient cycling in the ecosystems. In this study, we investigated litterfall and fine root biomass and production in five deciduous and four coniferous forests at the Gwangneung Experimental Forest in Korea. We used ingrowth cores to measure fine root production and root turnover rate. The litterfall was separated into leaves, twigs, and others, and then leaves were further separated according to species. Annual litterfall mass was not significantly different between the years, 360 to 651 g m-2 in 2011 and 300 to 656 g m-2 in 2012. Annual fine root (<5 mm) production was significantly higher in 2012 (421 to 1342 g m-2) than in 2011 (99 to 872 g m-2). Annual litterfall mass was significantly different among the stands, while fine root production did not statistically differ among the stands. The average fine root turnover rate, calculated by dividing the annual fine root production by the maximum standing fine root biomass, was 1.65 for deciduous forests and 1.97 for coniferous forests. Fine root production constituted 18-44% of NPP, where NPP was the sum of woody biomass production, litterfall production, and fine root production. Belowground production was a greater fraction of NPP in more productive forests suggesting their greater carbon allocation belowground.
Assuntos
Florestas , Raízes de Plantas/fisiologia , Biomassa , República da Coreia , SoloRESUMO
In September 2011, the Korean Society of Hematology Lymphoma Working Party held a nationwide conference to establish a consensus for assessing bone marrow (BM) involvement in patients with lymphoma. At this conference, many clinicians, hematopathologists, and diagnostic hematologists discussed various topics for a uniform consensus in the evaluation process to determine whether the BM is involved. Now that the discussion has matured sufficiently to be published, we herein describe the consensus reached and limitations in current methods for assessing BM involvement in patients with lymphoma.
Assuntos
Exame de Medula Óssea/métodos , Medula Óssea/patologia , Linfoma/patologia , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biópsia , Medula Óssea/química , Medula Óssea/imunologia , Consenso , Análise Citogenética , Diagnóstico Diferencial , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Linfoma/química , Linfoma/genética , Linfoma/imunologia , Gradação de Tumores , Valor Preditivo dos TestesRESUMO
PURPOSE: A worldwide compassionate-use program has enabled >42,000 patients with advanced non-small cell lung cancer (NSCLC) to receive gefitinib treatment. Here we report the outcome of gefitinib therapy in patients who enrolled in the "Iressa" Expanded Access Program at the Samsung Medical Center. EXPERIMENTAL DESIGN: Patients with advanced or metastatic NSCLC who had progressed after prior systemic chemotherapy and for whom no other treatment option was available were eligible to receive gefitinib treatment as part of the Expanded Access Program. A post hoc assessment of potential prognostic factors for response and survival was performed by multivariate analysis. RESULTS: All 111 evaluable patients had stage IV disease; most patients had a baseline performance status of 2 [n = 52 (47%)] or 3 [n = 18 (16%)] and had received >/=2 prior chemotherapy regimens (56%). The objective response rate was 26%, the disease control rate (measured over >/=8 weeks) was 40%, and the 1-year survival rate was 44%. Adenocarcinoma histology was associated with better response and disease control rates, and a performance status of 0-2 was also associated with a better disease control rate. Both of these factors, as well as female gender, were significantly associated with longer survival. Gefitinib was well tolerated; the most common adverse event was grade 1 skin rash. CONCLUSIONS: Gefitinib demonstrated significant antitumor activity and a favorable tolerability profile in this series of NSCLC patients with poor prognosis.