RESUMO
To maximize the performance of IoT devices in edge computing, an adaptive polling technique that efficiently and accurately searches for the workload-optimized polling interval is required. In this paper, we propose NetAP-ML, which utilizes a machine learning technique to shrink the search space for finding an optimal polling interval. NetAP-ML is able to minimize the performance degradation in the search process and find a more accurate polling interval with the random forest regression algorithm. We implement and evaluate NetAP-ML in a Linux system. Our experimental setup consists of a various number of virtual machines (2-4) and threads (1-5). We demonstrate that NetAP-ML provides up to 23% higher bandwidth than the state-of-the-art technique.
RESUMO
Online learning has made it possible to attend programming classes regardless of the constraint that all students should be gathered in a classroom. However, it has also made it easier for students to cheat on assignments. Therefore, we need a system to deal with cheating on assignments. This study presents a Watcher system, an automated cloud-based software platform for impartial and convenient online programming hands-on education. The primary features of Watcher are as follows. First, Watcher offers a web-based integrated development environment (Web-IDE) that allows students to start programming immediately without the need for additional installation and configuration. Second, Watcher collects and monitors the coding activity of students automatically in real-time. As Watcher provides the history of the coding activity to instructors in log files, the instructors can investigate suspicious coding activities such as plagiarism, even for a short source code. Third, Watcher provides facilities to remotely manage and evaluate students' hands-on programming assignments. We evaluated Watcher in a Unix system programming class for 96 students. The results showed that Watcher improves the quality of the coding experience for students through Web-IDE, and it offers instructors valuable data that can be used to analyze the various coding activities of individual students.