Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nano Lett ; 24(7): 2188-2195, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324001

RESUMO

Over the past few decades, hydrogels have attracted considerable attention as promising biomedical materials. However, conventional hydrogels require improved mechanical properties, such as brittleness, which significantly limits their widespread use. Recently, hydrogels with remarkably improved toughness have been developed; however, their low biocompatibility must be addressed. In this study, we developed a tough graphene hybrid hydrogel with nanostructures. The resultant hydrogel exhibited remarkable mechanical properties while representing an aligned nanostructure that resembled the extracellular matrix of soft tissue. Owing to the synergistic effect of the topographical properties, and the enhanced biochemical properties, the graphene hybrid hydrogel had excellent stretchability, resilience, toughness, and biocompatibility. Furthermore, the hydrogel displayed outstanding tissue regeneration capabilities (e.g., skin and tendons). Overall, the proposed graphene hybrid tough hydrogel may provide significant insights into the application of tough hydrogels in tissue regeneration.


Assuntos
Grafite , Nanoestruturas , Hidrogéis/química , Grafite/química , Materiais Biocompatíveis/química , Nanoestruturas/uso terapêutico
2.
Environ Res ; 250: 118490, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365052

RESUMO

Agriculturally derived by-products generated during the growth cycles of living organisms as secondary products have attracted increasing interest due to their wide range of biomedical and environmental applications. These by-products are considered promising candidates because of their unique characteristics including chemical stability, profound biocompatibility and offering a green approach by producing the least impact on the environment. Recently, micro/nanoengineering based techniques play a significant role in upgrading their utility, by controlling their structural integrity and promoting their functions at a micro and nano scale. Specifically, they can be used for biomedical applications such as tissue regeneration, drug delivery, disease diagnosis, as well as environmental applications such as filtration, bioenergy production, and the detection of environmental pollutants. This review highlights the diverse role of micro/nano-engineering techniques when applied on agricultural by-products with intriguing properties and upscaling their wide range of applications across the biomedical and environmental fields. Finally, we outline the future prospects and remarkable potential that these agricultural by-products hold in establishing a new era in the realms of biomedical science and environmental research.


Assuntos
Agricultura , Nanotecnologia , Agricultura/métodos , Humanos
3.
Nano Lett ; 23(12): 5573-5580, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37311113

RESUMO

Inner ear organoids (IEOs) are 3D structures grown in vitro, which can mimic the complex cellular structure and function of the inner ear. IEOs are potential solutions to problems related to inner ear development, disease modeling, and drug delivery. However, current approaches in generating IEOs using chemical factors have a few limitations, resulting in unpredictable outcomes. In this study, we propose the use of nanomaterial-based approaches, specifically by using graphene oxide (GO). GO's unique properties promote cell-extracellular matrix interactions and cell-cell gap junctions, thereby enhancing hair cell formation, which is an essential part of IEO development. We also investigated the potential applications for drug testing. Our findings suggest that GO is a promising candidate for enhancing the functionality of IEOs and advancing our understanding of the problems underlying inner ear development. The use of nanomaterial-based approaches may provide a more reliable and effective method for building better IEOs in the future.


Assuntos
Orelha Interna , Grafite , Grafite/farmacologia , Células Ciliadas Auditivas , Organoides
4.
Connect Tissue Res ; 62(2): 164-175, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31581855

RESUMO

Calcium phosphate cements (CPCs) are regarded as promising graft substitutes for bone tissue engineering. However, their wide use is limited by the high cost associated with the complex synthetic processes involved in their fabrication. Cheaper xenogeneic calcium phosphate (CaP) materials derived from waste animal bone may solve this problem. Moreover, the surface topography, mechanical strength, and cellular function of CPCs are influenced by the ratio of micro- to nano-sized CaP (M/NCaP) particles. In this study, we developed waste equine bone (EB)-derived CPCs with various M/NCaP particle ratios to examine the potential capacity of EB-CPCs for bone grafting materials. Our study showed that increasing the number of NCaP particles resulted in reductions in roughness and porosity while promoting smoother surfaces of EB-CPCs. Changes in the chemical properties of EB-CPCs by NCaP particles were observed using X-ray diffractometry. The mechanical properties and cohesiveness of the EB-CPCs improved as the NCaP particle content increased. In an in vitro study, EB-CPCs with a greater proportion of MCaP particles showed higher cell adhesion. Alkaline phosphatase activity indicated that osteogenic differentiation by EB-CPCs was promoted with increased NCaP particle content. These results could provide a design criterion for bone substitutes for orthopedic disease, including periodontal bone defects.


Assuntos
Células-Tronco Mesenquimais , Animais , Cimentos Ósseos/farmacologia , Substitutos Ósseos/farmacologia , Fosfatos de Cálcio/farmacologia , Cavalos , Humanos , Teste de Materiais , Osteogênese
5.
Artigo em Inglês | MEDLINE | ID: mdl-38062728

RESUMO

In recent decades, cultured meat has received considerable interest as a sustainable alternative to traditional meat products, showing promise for addressing the inherent problems associated with conventional meat production. However, current limitations on the scalability of production and extremely high production costs have prevented their widespread adoption. Therefore, it is important to develop novel engineering strategies to overcome the current limitations in large-scale cultured meat production. Such engineering considerations have the potential for advancements in cultured meat production by providing innovative and effective solutions to the prevailing challenges. In this review, we discuss how engineering strategies have been utilized to advance cultured meat technology by categorizing the production processes of cultured meat into three distinct steps: (1) cell preparation; (2) cultured meat fabrication; and (3) cultured meat maturation. For each step, we provide a comprehensive discussion of the recent progress and its implications. In particular, we focused on the engineering considerations involved in each step of cultured meat production, with specific emphasis on large-scale production.

6.
Biomater Res ; 27(1): 67, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420273

RESUMO

Personalized medicine aims to provide tailored medical treatment that considers the clinical, genetic, and environmental characteristics of patients. iPSCs have attracted considerable attention in the field of personalized medicine; however, the inherent limitations of iPSCs prevent their widespread use in clinical applications. That is, it would be important to develop notable engineering strategies to overcome the current limitations of iPSCs. Such engineering approaches could lead to significant advances in iPSC-based personalized therapy by offering innovative solutions to existing challenges, from iPSC preparation to clinical applications. In this review, we summarize how engineering strategies have been used to advance iPSC-based personalized medicine by categorizing the development process into three distinctive steps: 1) the production of therapeutic iPSCs; 2) engineering of therapeutic iPSCs; and 3) clinical applications of engineered iPSCs. Specifically, we focus on engineering strategies and their implications for each step in the development of iPSC-based personalized medicine.

7.
J Control Release ; 357: 94-108, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931470

RESUMO

Cancer stem cells (CSCs) possess the ability to indefinitely proliferate and resist therapy, leading to cancer relapse and metastasis. To address this, we aimed to develop a CSC-inclusive therapy that targets both CSCs and non-CSC glioblastoma (GBM) cells. We accomplished this by using a smoothened (SMO) CRISPR/Cas9 plasmid to suppress the hedgehog pathway in CSCs, in combination with inhibiting the serine hydroxymethyl transferase 1 (SHMT1)-driven thymidylate biosynthesis pathway in non-CSC GBM cells using SHMT1 siRNA (siSHMT1). We targeted CSCs using a CD133 peptide attached to an osmotically active vitamin B6-coupled polydixylitol vector (VPX-CD133) by a photoactivatable heterobifunctional linker. VPX-CD133 nanocomplexes in comparison to VPX complexes remarkably targeted and transfected CSCs both in vitro and in subcutaneous tumor. The VPX-CD133-mediated targeted delivery of SMO CRISPR in CSCs led to SMO suppression that negatively affected its growth. Next, we performed comprehensive therapy in xenograft mice using VPX-CD133, which delivered SMO-CRISPR to CSCs, and VPX, which delivered siSHMT1 to non-CSC GBM cells. The combined treatment induced apoptosis in a large number of cells, reduced tumor volume by up to 81%, and improved the health of treated mice significantly. By eliminating CSCs together with the non-CSC GBM cells, the combined study paves the way for developing CSC-inclusive therapies for GBM.


Assuntos
Glioblastoma , Proteínas Hedgehog , Humanos , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , RNA Interferente Pequeno/metabolismo , Apoptose , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Antígeno AC133 , Receptor Smoothened/metabolismo
8.
Polymers (Basel) ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37688193

RESUMO

Three-dimensional (3D) bioprinting holds great promise for tissue engineering, allowing cells to thrive in a 3D environment. However, the applicability of natural polymers such as silk fibroin (SF) in 3D bioprinting faces hurdles due to limited mechanical strength and printability. SF, derived from the silkworm Bombyx mori, is emerging as a potential bioink due to its inherent physical gelling properties. However, research on inducing thermosensitive behavior in SF-based bioinks and tailoring their mechanical properties to specific tissue requirements is notably lacking. This study addresses these gaps through the development of silk fibroin-based thermosensitive bioinks (SF-TPBs). Precise modulation of gelation time and mechanical robustness is achieved by manipulating glycerol content without recourse to cross-linkers. Chemical analysis confirms ß-sheet conformation in SF-TPBs independent of glycerol concentration. Increased glycerol content improves gelation kinetics and results in rheological properties suitable for 3D printing. Overall, SF-TPBs offer promising prospects for realizing the potential of 3D bioprinting using natural polymers.

9.
Materials (Basel) ; 16(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37763431

RESUMO

Three-dimensional (3D) printed calcium phosphate cement (CPC) scaffolds are increasingly being used for bone tissue repair. Traditional materials used for CPC scaffolds, such as bovine and porcine bone, generally contain low amounts of calcium phosphate compounds, resulting in reduced production rates of CPC scaffolds. On the other hand, cockle shells contain more than 99% CaCO3 in the form of amorphous aragonite with excellent biocompatibility, which is expected to increase the CPC production rate. In this study, 3D-printed cockle shell powder-based CPC (CSP-CPC) scaffolds were developed by the material extrusion method. Lactic acid and hyaluronic acid were used to promote the printability. The characterization of CSP-CPC scaffolds was performed using Fourier transform infrared spectra, X-ray diffraction patterns, and scanning electron microscopy. The biocompatibility of CSP-CPC scaffolds was evaluated using cell viability, Live/Dead, and alkaline phosphatase assays. In addition, CSP-CPC scaffolds were implanted into the mouse calvarial defect model to confirm bone regeneration. This study provides an opportunity to create high value added in fishing villages by recycling natural products from marine waste.

10.
ACS Biomater Sci Eng ; 9(2): 968-977, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36701173

RESUMO

Developing a scaffold for efficient and functional bone regeneration remains challenging. To accomplish this goal, a "scaffold-on-a-chip" device was developed as a platform to aid with the evaluation process. The device mimics a microenvironment experienced by a transplanted bone scaffold. The device contains a circular space at the center for scaffold insert and microfluidic channel that encloses the space. Such a design allows for monitoring of cell behavior at the blood-scaffold interphase. MC3T3-E1 cells were cultured with three different types of scaffold inserts to test its capability as an evaluation platform. Cellular behaviors, including migration, morphology, and osteogenesis with each scaffold, were analyzed through fluorescence images of live/dead assay and immunocytochemistry. Cellular behaviors, such as migration, morphology, and osteogenesis, were evaluated. The results revealed that our platform could effectively evaluate the osteoconductivity and osteoinductivity of scaffolds with various properties. In conclusion, our proposed platform is expected to replace current in vivo animal models as a highly relevant in vitro platform and can contribute to the fundamental study of bone regeneration.


Assuntos
Osteogênese , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Regeneração Óssea , Impressão Tridimensional , Dispositivos Lab-On-A-Chip
11.
RSC Adv ; 12(9): 5557-5570, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35425568

RESUMO

Natural calcium phosphate cements (CPCs) derived from sintered animal bone have been investigated to treat bone defects, but their low mechanical strength remains a critical limitation. Graphene improves the mechanical properties of scaffolds and promotes higher osteoinduction. To this end, reduced graphene oxide-incorporated natural calcium phosphate cements (RGO-CPCs) are fabricated for reinforcement of CPCs' characteristics. Pulsed electromagnetic fields (PEMFs) were additionally applied to RGO-CPCs to promote osteogenic differentiation ability. The fabricated RGO-CPCs show distinct surface properties and chemical properties according to the RGO concentration. The RGO-CPCs' mechanical properties are significantly increased compared to CPCs owing to chemical bonding between RGO and CPCs. In in vitro studies using a mouse osteoblast cell line and rat-derived adipose stem cells, RGO-CPCs are not severely toxic to either cell type. Cell migration study, western blotting, immunocytochemistry, and alizarin red staining assay reveal that osteoinductivity as well as osteoconductivity of RGO-CPCs was highly increased. In in vivo study, RGO-CPCs not only promoted bone ingrowth but also enhanced osteogenic differentiation of stem cells. Application of PEMFs enhanced the osteogenic differentiation of stem cells. RGO-CPCs with PEMFs can overcome the flaws of previously developed natural CPCs and are anticipated to open the gate to clinical application for bone repair and regeneration.

12.
Polymers (Basel) ; 13(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807666

RESUMO

Periodontal diseases occur through bacterial infection in the oral cavity, which can cause alveolar bone loss. Several efforts have been made to reconstruct alveolar bone, such as grafting bone substitutes and 3D-printed scaffolds. Poly(ε-caprolactone) (PCL) is biocompatible and biodegradable, thus demonstrating its potential as a biomaterial substitute; however, it is difficult for cells to adhere to PCL because of its strong hydrophobicity. Therefore, its use as a biomaterial has limitations. In this study, we used graphene oxide (GO) as a coating material to promote the osteogenic differentiation ability of PCL scaffolds. First, 3D-printed PCL scaffolds were fabricated, and the oxygen plasma treatment and coating conditions were established according to the concentration of GO. The physical and chemical properties of the prepared scaffolds were evaluated through water contact angle analysis, Raman spectroscopy, and image analysis. In addition, the adhesion and proliferation of periodontal ligament stem cells (PDLSCs) on the GO scaffolds were assessed via the water-soluble tetrazolium salt-1 (WST-1) assay, and the osteogenic differentiation ability was evaluated through alizarin red S staining. The results confirmed that the cell proliferation and osteogenic differentiation of the PDLSCs were enhanced in the scaffolds coated with oxygen plasma and GO. In conclusion, the plasma-treated GO-coating method that we developed can be used to promote the cell proliferation and osteogenic differentiation of the scaffolds.

13.
Sci Rep ; 11(1): 17329, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462607

RESUMO

Cryopreservation, the most common method of preserving stem cells, requires post-processing because it produces trauma to the cells. Post-thawing trauma typically induces cell death, elevates reactive oxygen species (ROS) concentration, and lowers mitochondrial membrane potential (MMP). Although this trauma has been solved using antioxidants, we attempted to use photobiomodulation (PBM) instead of chemical treatment. We used a 950-nm near-infrared LED to create a PBM device and chose a pulsed-wave mode of 30 Hz and a 30% duty cycle. Near-infrared radiation (NIR) at 950 nm was effective in reducing cell death caused by hydrogen peroxide induced-oxidative stress. Cryodamage also leads to apoptosis of cells, which can be avoided by irradiation at 950 nm NIR. Irradiation as post-processing for cryopreservation had an antioxidant effect that reduced both cellular and mitochondrial ROS. It also increased mitochondrial mass and activated mitochondrial activity, resulting in increased MMP, ATP generation, and increased cytochrome c oxidase activity. In addition, NIR increased alkaline phosphatase (ALP) activity, a biomarker of differentiation. As a result, we identified that 950 nm NIR PBM solves cryodamage in human stem cells from the apical papilla, indicating its potential as an alternative to antioxidants for treatment of post-thawing trauma, and further estimated its mechanism.


Assuntos
Antioxidantes/metabolismo , Potencial da Membrana Mitocondrial , Fototerapia/métodos , Células-Tronco/citologia , Fosfatase Alcalina/metabolismo , Apoptose , Biomarcadores/metabolismo , Biofísica , Biologia Celular , Morte Celular , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Criopreservação , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Desenho de Equipamento , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Luminescência , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Espectroscopia de Luz Próxima ao Infravermelho
14.
Polymers (Basel) ; 13(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067377

RESUMO

Endoscopic submucosal dissection (ESD) is a surgical procedure to remove early neoplastic lesions in the gastrointestinal tract with the critical issue of perforation. A submucosal fluid cushion, such as normal saline, is used as a cushioning agent to prevent perforation; however, its cushioning maintenance is insufficient for surgery. In this study, we introduce an injectable thermosensitive chitosan solution (CS) with ß-glycerophosphate (ß-GP) as a submucosal injection agent for ESD. The CS/ß-GP system with optimal ß-GP concentration showed drastic viscosity change near body temperature while other commercial products did not. Additionally, the injectability of the solution was similar to or greater than other commercial products. The solution with low ß-GP concentration showed low cytotoxicity similar to other products. An in vivo preclinical study illustrated maintenance of the high cushioning of the thermosensitive solutions. These results indicate that a CS/ß-GP system with optimal ß-GP concentration might be used as a submucosal injection agent in ESD, and further studies are needed to validate the effectiveness of the solutions in vivo.

15.
Nanomaterials (Basel) ; 11(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513757

RESUMO

Supramolecular hydrogels are considered promising drug carriers in the tissue engineering field due to their versatile nature. Chitosan hydrogels without chemical cross-linkers have low cytotoxicity and good delivery capacity; however, they have lower mechanical properties for injectable hydrogel usage. In this study, we developed novel chitosan derivatives via click chemistry for fabricating supramolecular hydrogels with higher mechanical strength under mild conditions. The chitosan derivative was successfully synthesized by a sulfur fluoride exchange reaction, and the synthesized chitosan-mPEG/Pluronic-F127 (CS-mPEG/F127) interacted with α-cyclodextrin (α-CD) to form a supramolecular hydrogel via a host-guest reaction. The gelation dynamics, hydrogel properties, and bovine serum albumin (BSA) release could be modulated by the concentration ratio of chitosan-mPEG and F127. This supramolecular hydrogel is a promising protein releasing carrier candidate for long term regeneration therapy.

16.
Polymers (Basel) ; 13(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466736

RESUMO

The 3D-printed bioactive ceramic incorporated Poly(ε-caprolactone) (PCL) scaffolds show great promise as synthetic bone graft substitutes. However, 3D-printed scaffolds still lack adequate surface properties for cells to be attached to them. In this study, we modified the surface characteristics of 3D-printed poly(ε-caprolactone)/hydroxyapatite scaffolds using O2 plasma and sodium hydroxide. The surface property of the alkaline hydrolyzed and O2 plasma-treated PCL/HA scaffolds were evaluated using field-emission scanning microscopy (FE-SEM), Alizarin Red S (ARS) staining, and water contact angle analysis, respectively. The in vitro behavior of the scaffolds was investigated using human dental pulp-derived stem cells (hDPSCs). Cell proliferation of hDPSCs on the scaffolds was evaluated via immunocytochemistry (ICC) and water-soluble tetrazolium salt (WST-1) assay. Osteogenic differentiation of hDPSCs on the scaffolds was further investigated using ARS staining and Western blot analysis. The result of this study shows that alkaline treatment is beneficial for exposing hydroxyapatite particles embedded in the scaffolds compared to O2 plasma treatment, which promotes cell proliferation and differentiation of hDPSCs.

17.
Bioact Mater ; 6(9): 2742-2751, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33665505

RESUMO

Hydroxyapatite (HA) is a representative substance that induces bone regeneration. Our research team extracted nanohydroxyapatite (EH) from natural resources, especially equine bones, and developed it as a molecular biological tool. Polyethylenimine (PEI) was used to coat the EH to develop a gene carrier. To verify that PEI is well coated in the EH, we first observed the morphology and dispersity of PEI-coated EH (pEH) by electron microscopy. The pEH particles were well distributed, while only the EH particles were not distributed and aggregated. Then, the existence of nitrogen elements of PEI on the surface of the pEH was confirmed by EDS, calcium concentration measurement and fourier transform infrared spectroscopy (FT-IR). Additionally, the pEH was confirmed to have a more positive charge than the 25 kD PEI by comparing the zeta potentials. As a result of pGL3 transfection, pEH was better able to transport genes to cells than 25 kD PEI. After verification as a gene carrier for pEH, we induced osteogenic differentiation of DPSCs by loading the BMP-2 gene in pEH (BMP-2/pEH) and delivering it to the cells. As a result, it was confirmed that osteogenic differentiation was promoted by showing that the expression of osteopontin (OPN), osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2) was significantly increased in the group treated with BMP-2/pEH. In conclusion, we have not only developed a novel nonviral gene carrier that is better performing and less toxic than 25 kD PEI by modifying natural HA (the agricultural byproduct) but also proved that bone differentiation can be effectively promoted by delivering BMP-2 with pEH to stem cells.

18.
Polymers (Basel) ; 13(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34301012

RESUMO

The use of bone graft materials is required for the treatment of bone defects damaged beyond the critical defect; therefore, injectable calcium phosphate cement (CPC) is actively used after surgery. The application of various polymers to improve injectability, mechanical strength, and biological function of injection-type CPC is encouraged. We previously developed a chitosan-PEG conjugate (CS/PEG) by a sulfur (VI) fluoride exchange reaction, and the resulting chitosan derivative showed high solubility at a neutral pH. We have demonstrated the CPC incorporated with a poly (ethylene glycol) (PEG)-grafted chitosan (CS/PEG) and developed CS/PEG CPC. The characterization of CS/PEG CPC was conducted using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The initial properties of CS/PEG CPCs, such as the pH, porosity, mechanical strength, zeta potential, and in vitro biocompatibility using the WST-1 assay, were also investigated. Moreover, osteocompatibility of CS/PEG CPCs was carried out via Alizarin Red S staining, immunocytochemistry, and Western blot analysis. CS/PEG CPC has enhanced mechanical strength compared to CPC, and the cohesion test also demonstrated in vivo stability. Furthermore, we determined whether CS/PEG CPC is a suitable candidate for promoting the osteogenic ability of Dental Pulp Stem Cells (DPSC). The elution of CS/PEG CPC entraps more calcium ion than CPC, as confirmed through the zeta potential test. Accordingly, the ion trapping effect of CS/PEG is considered to have played a role in promoting osteogenic differentiation of DPSCs. The results strongly suggested that CS/PEG could be used as suitable additives for improving osteogenic induction of bone substitute materials.

19.
Polymers (Basel) ; 13(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375761

RESUMO

Post-surgery failure of dental implants due to alveolar bone loss is currently critical, disturbing the quality of life of senior dental patients. To overcome this problem, bioceramic or bone graft material is loaded into the defect. However, connective tissue invasion instead of osteogenic tissue limits bone tissue regeneration. The guided bone regeneration concept was adapted to solve this problem and still has room for improvements, such as biochemical similarity or oriented structure. In this article, an aligned electrospun-guided bone regeneration barrier with xenograft equine bone-derived nano hydroxyapatite (EBNH-RB) was fabricated by electrospinning EBNH/PCL solution on high-speed rotating drum collector and fiber characterization, viability and differentiation enhancing properties of mesenchymal dental pulp stem cell on the barrier was determined. EBNH-RB showed biochemical and structural similarity to natural bone tissue electron microscopy image analysis and x-ray diffractometer analysis, and had a significantly better effect in promoting osteogenesis based on the increased bioceramic content by promoting cell viability, calcium deposition and osteogenic marker expression, suggesting that they can be successfully applied to regenerate alveolar bone as a guided bone regeneration barrier.

20.
Adv Healthc Mater ; 8(2): e1801160, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30548428

RESUMO

Chronic tympanic membrane (TM) perforations can cause otorrhea. To date, various types of tissue engineering techniques have been applied for the regeneration of chronic TM perforations. However, the application of nanofibers with radially aligned nanostructures and the simultaneous release of growth factors have never been applied in the regeneration of chronic TM perforations. Here, epidermal growth factor (EGF)-releasing radially aligned nanofibrous patches (ERA-NFPs) are developed and applied for the regeneration of chronic perforated TMs. First, radial alignments and the presence of EGF in the ERA-NFPs are analyzed. EGF is confirmed to be released from the ERA-NFPs until 8 weeks. In an in vitro study, cell viability assay, immunocytochemistry, and wound-healing assay indicate rational enhancement of healing by the combination of radial alignments and EGF release. The effect of ERA-NFPs on TM cells is revealed by quantitative real-time polymerase chain reaction. An in vivo animal study shows that the ERA-NFPs effectively stimulates the healing of the chronic TM perforations. The TMs healed by ERA-NFPs show histological properties similar to those of normal TMs. These results indicate that ERA-NFPs may be an efficient platform for the regeneration of chronic TM perforations, laying the foundation for nonsurgical treatments of chronic otitis media.


Assuntos
Fator de Crescimento Epidérmico/farmacocinética , Nanofibras/administração & dosagem , Nanofibras/química , Perfuração da Membrana Timpânica/terapia , Animais , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Fator de Crescimento Epidérmico/química , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regeneração Tecidual Guiada/métodos , Microscopia Eletrônica de Varredura , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA