Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 198: 106554, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844243

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder that severely affects the basal ganglia and regions of the cerebral cortex. While astrocytosis and microgliosis both contribute to basal ganglia pathology, the contribution of gliosis and potential factors driving glial activity in the human HD cerebral cortex is less understood. Our study aims to identify nuanced indicators of gliosis in HD which is challenging to identify in the severely degenerated basal ganglia, by investigating the middle temporal gyrus (MTG), a cortical region previously documented to demonstrate milder neuronal loss. Immunohistochemistry was conducted on MTG paraffin-embedded tissue microarrays (TMAs) comprising 29 HD and 35 neurologically normal cases to compare the immunoreactivity patterns of key astrocytic proteins (glial fibrillary acidic protein, GFAP; inwardly rectifying potassium channel 4.1, Kir4.1; glutamate transporter-1, GLT-1; aquaporin-4, AQP4), key microglial proteins (ionised calcium-binding adapter molecule-1, IBA-1; human leukocyte antigen (HLA)-DR; transmembrane protein 119, TMEM119; purinergic receptor P2RY12, P2RY12), and indicators of proliferation (Ki-67; proliferative cell nuclear antigen, PCNA). Our findings demonstrate an upregulation of GFAP+ protein expression attributed to the presence of more GFAP+ expressing cells in HD, which correlated with greater cortical mutant huntingtin (mHTT) deposition. In contrast, Kir4.1, GLT-1, and AQP4 immunoreactivity levels were unchanged in HD. We also demonstrate an increased number of IBA-1+ and TMEM119+ microglia with somal enlargement. IBA-1+, TMEM119+, and P2RY12+ reactive microglia immunophenotypes were also identified in HD, evidenced by the presence of rod-shaped, hypertrophic, and dystrophic microglia. In HD cases, IBA-1+ cells contained either Ki-67 or PCNA, whereas GFAP+ astrocytes were devoid of proliferative nuclei. These findings suggest cortical microgliosis may be driven by proliferation in HD, supporting the hypothesis of microglial proliferation as a feature of HD pathophysiology. In contrast, astrocytes in HD demonstrate an altered GFAP expression profile that is associated with the degree of mHTT deposition.


Assuntos
Astrócitos , Proliferação de Células , Doença de Huntington , Microglia , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Microglia/metabolismo , Microglia/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Proliferação de Células/fisiologia , Adulto , Idoso , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Gliose/metabolismo , Gliose/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Membrana , Proteínas dos Microfilamentos
2.
Cell Commun Signal ; 22(1): 30, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212807

RESUMO

Glioblastoma is the most common and aggressive primary brain tumour in adults. The development of anti-brain cancer agents are challenged by the blood-brain barrier and the resistance conferred by the local tumour microenvironment. Heptamethine cyanine dyes (HMCDs) are a class of near-infrared fluorescence compounds that have recently emerged as promising agents for drug delivery. We conjugated palbociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, to an HMCD, MHI-148, and conducted drug activity analysis on primary patient-derived glioblastoma cell lines. In addition to the expected cytostatic activity, our in vitro studies revealed that palbociclib-MHI-148 conjugate resulted in an almost 100-fold increase in cytotoxicity compared to palbociclib alone. This shift of palbociclib from cytostatic to cytotoxic when conjugated to MHI-148 was due to increased DNA damage, as indicated by an increase in γH2AX foci, followed by an increased expression of key extrinsic apoptosis genes, including TP53, TNFR1, TRAIL, FADD and caspase 8. In addition, we observed a time-dependent increase in the cell surface expression of TNFR1, consistent with an observed increase in the secretion TNFα, followed by TNFR1 endocytosis at 48 h. The treatment of patient GBM cells with the palbociclib-MHI-148 conjugate prevented TNFα-induced NFκB translocation, suggesting conjugate-induced TNFR1 signalling favoured the TNFR1-mediated apoptotic response rather than the pro-inflammatory response pathway. Notably, pharmacological inhibition of endocytosis of TNFR1, and siRNA-knockdown of TNFR1 reversed the palbociclib-MHI-148-induced cell death. These results show a novel susceptibility of glioblastoma cells to TNFR1-dependent apoptosis, dependent on inhibition of canonical NFκB signalling using our previously reported palbociclib-HMCD conjugate. Video Abstract.


Assuntos
Antineoplásicos , Carbocianinas , Citostáticos , Glioblastoma , Indóis , Piperazinas , Piridinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Citostáticos/farmacologia , Citostáticos/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Receptores do Fator de Necrose Tumoral/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo
3.
Cytometry A ; 103(6): 518-527, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36786336

RESUMO

Current analysis techniques available for migration assays only provide quantitative measurements for overall migration. However, the potential of regional migration analyses can open further insight into migration patterns and more avenues of experimentation with the same assays. Previously, we developed an analysis pipeline utilizing the finite element (FE) method to show its potential in analyzing glioblastoma (GBM) tumorsphere migration, especially in characterizing regional changes in the migration pattern. This study aims to streamline and further automate the analysis system by integrating the machine-learning-based U-Net segmentation with the FE method. Our U-Net-based segmentation achieved a 98% accuracy in segmenting our tumorspheres. From the segmentations, FE models made up of 3D hexahedral elements were generated, and the migration patterns of the tumorspheres were analyzed under treatments B and C (under non-disclosure agreements). Our results show that our overall migration analysis correlated very strongly (R2 of 0.9611 and 0.9986 for treatments B and C, respectively) with ImageJ's method of migration area analysis, which is the most common method of tumorsphere migration analysis. Additionally, we were able to quantitatively represent the regional migration patterns in our FE models, which the methods purely based on segmentations could not do. Moreover, the new pipeline improved the efficiency and accessibility of the initial pipeline by implementing machine learning-based automated segmentation onto a mainly open-sourced FE analysis platform. In conclusion, our algorithm enables the development of a high-content and high-throughput in vitro screening platform to elucidate anti-migratory molecules that may reduce the invasiveness of these malignant tumors.


Assuntos
Glioblastoma , Aprendizado de Máquina , Humanos , Glioblastoma/patologia , Algoritmos
4.
J Neurophysiol ; 123(3): 945-965, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31995449

RESUMO

The human brain shows remarkable complexity in its cellular makeup and function, which are distinct from nonhuman species, signifying the need for human-based research platforms for the study of human cellular neurophysiology and neuropathology. However, the use of adult human brain tissue for research purposes is hampered by technical, methodological, and accessibility challenges. One of the major problems is the limited number of in vitro systems that, in contrast, are readily available from rodent brain tissue. With recent advances in the optimization of protocols for adult human brain preparations, there is a significant opportunity for neuroscientists to validate their findings in human-based systems. This review addresses the methodological aspects, advantages, and disadvantages of human neuron in vitro systems, focusing on the unique properties of human neurons and synapses in neocortical microcircuits. These in vitro models provide the incomparable advantage of being a direct representation of the neurons that have formed part of the human brain until the point of recording, which cannot be replicated by animal models nor human stem-cell systems. Important distinct cellular mechanisms are observed in human neurons that may underlie the higher order cognitive abilities of the human brain. The use of human brain tissue in neuroscience research also raises important ethical, diversity, and control tissue limitations that need to be considered. Undoubtedly however, these human neuron systems provide critical information to increase the potential of translation of treatments from the laboratory to the clinic in a way animal models are failing to provide.


Assuntos
Neocórtex/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Técnicas de Cultura de Órgãos , Sinapses/fisiologia , Humanos
5.
Bioconjug Chem ; 31(7): 1724-1739, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32530288

RESUMO

This review covers the application of heptamethine cyanine dye (HMCD) mediated drug delivery. A relatively small number of HMCDs possess tumor targeting abilities, and this has spurred interest from research groups to explore them as drug delivery systems. Their tumor selectivity is primarily attributed to their uptake by certain isoforms of organic anion transporting polypeptides (OATPs) which are overexpressed in cancer tissues, although there are other possible mechanisms for the observed selectivity still under investigation. This specificity is confirmed using various cancer cell lines and is accompanied by moderate cytotoxicity. Their retention in tumor tissue is facilitated by the formation of albumin adducts as revealed by published mechanistic studies. HMCDs are also organelle selective dyes with specificity toward mitochondria and lysosomes, and with absorption and emission in the near-infrared region. This makes them valuable tools for biomedical imaging, especially in the field of fluorescence-guided tumor surgery. Furthermore, conjugating antitumor agents to HMCDs is providing novel drugs that await clinical testing. HMCD development as theranostic agents with dual tumor targeting and treatment capability signals a new approach to overcome drug resistance (mediated through evasion of efflux pumps) and systemic toxicity, the two parameters which have long plagued drug discovery.


Assuntos
Antineoplásicos/administração & dosagem , Carbocianinas/administração & dosagem , Corantes/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Linfoma de Burkitt/tratamento farmacológico , Carbocianinas/farmacologia , Carbocianinas/uso terapêutico , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Neoplasias Renais/tratamento farmacológico , Masculino , Medicina de Precisão , Neoplasias da Próstata/tratamento farmacológico
6.
Bioorg Med Chem Lett ; 30(14): 127252, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32527552

RESUMO

We describe the synthesis and in vitro activity of drug-dye conjugate 1, which is a combination of the PARP inhibitor rucaparib and heptamethine cyanine dye IR-786. The drug-dye conjugate 1 was evaluated in three different patient-derived glioblastoma cell lines and showed strong cytotoxic activity with nanomolar potency (EC50: 128 nM), which was a 780 fold improvement over rucaparib itself. We also observe a synergistic effect of 1 with temozolomide (TMZ), the standard drug for treatment for glioblastoma even though these cell lines were resistant to TMZ treatment. We envisage such conjugates to be worth exploring for their utility in the treatment of various brain cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Carbocianinas/farmacologia , Glioblastoma/tratamento farmacológico , Indóis/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Carbocianinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Indóis/química , Estrutura Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 29(18): 2617-2621, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31378572

RESUMO

We describe the synthesis of drug-dye conjugate 1 between anaplastic lymphoma kinase inhibitor Crizotinib and heptamethine cyanine dye IR-786. The drug-dye conjugate 1 was evaluated in three different patient-derived glioblastoma cell lines and showed potent cytotoxic activity with nanomolar potency (EC50: 50.9 nM). We also demonstrate evidence for antiproliferative activity of 1 with single digit nanomolar potency (IC50: 4.7 nM). Furthermore, the cytotoxic effects conveyed a dramatic, 110-fold improvement over Crizotinib. This improvement was even more pronounced (492-fold) when 1 was combined with Temozolomide, the standard drug for treatment for glioblastoma. This work lays the foundation for future exploration of similar tyrosine kinase inhibitor drug-dye conjugates for the treatment of glioblastoma.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Carbocianinas/farmacologia , Crizotinibe/farmacologia , Citostáticos/farmacologia , Corantes Fluorescentes/farmacologia , Glioblastoma/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Carbocianinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Crizotinibe/química , Citostáticos/síntese química , Citostáticos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Humanos , Estrutura Molecular , Imagem Óptica , Relação Estrutura-Atividade
8.
J Neuroinflammation ; 15(1): 138, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751771

RESUMO

BACKGROUND: Pericytes and endothelial cells are critical cellular components of the blood-brain barrier (BBB) and play an important role in neuroinflammation. To date, the majority of inflammation-related studies in endothelia and pericytes have been carried out using immortalised cell lines or non-human-derived cells. Whether these are representative of primary human cells is unclear and systematic comparisons of the inflammatory responses of primary human brain-derived pericytes and endothelia has yet to be performed. METHODS: To study the effects of neuroinflammation at the BBB, primary brain endothelial cells and pericytes were isolated from human biopsy tissue. Culture purity was examined using qPCR and immunocytochemistry. Electrical cell-substrate impedance sensing (ECIS) was used to determine the barrier properties of endothelial and pericyte cultures. Using immunocytochemistry, cytometric bead array, and ECIS, we compared the responses of endothelia and pericytes to a panel of inflammatory stimuli (IL-1ß, TNFα, LPS, IFN-γ, TGF-ß1, IL-6, and IL-4). Secretome analysis was performed to identify unique secretions of endothelia and pericytes in response to IL-1ß. RESULTS: Endothelial cells were pure, moderately proliferative, retained the expression of BBB-related junctional proteins and transporters, and generated robust TEER. Both endothelia and pericytes have the same pattern of transcription factor activation in response to inflammatory stimuli but respond differently at the secretion level. Secretome analysis confirmed that endothelia and pericytes have overlapping but distinct secretome profiles in response to IL-1ß. We identified several cell-type specific responses, including G-CSF and GM-CSF (endothelial-specific), and IGFBP2 and IGFBP3 (pericyte-specific). Finally, we demonstrated that direct addition of IL-1ß, TNFα, LPS, and IL-4 contributed to the loss of endothelial barrier integrity in vitro. CONCLUSIONS: Here, we identify important cell-type differences in the inflammatory response of brain pericytes and endothelia and provide, for the first time, a comprehensive profile of the secretions of primary human brain endothelia and pericytes which has implications for understanding how inflammation affects the cerebrovasculature.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Mediadores da Inflamação/metabolismo , Pericitos/metabolismo , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/farmacologia , Pericitos/efeitos dos fármacos
9.
BMC Neurosci ; 19(1): 6, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29471788

RESUMO

BACKGROUND: Brain pericytes ensheathe the endothelium and contribute to formation and maintenance of the blood-brain-barrier. Additionally, pericytes are involved in several aspects of the CNS immune response including scarring, adhesion molecule expression, chemokine secretion, and phagocytosis. In vitro cultures are routinely used to investigate these functions of brain pericytes, however, these are highly plastic cells and can display differing phenotypes and functional responses depending on their culture conditions. Here we sought to investigate how two commonly used culture media, high serum containing DMEM/F12 and low serum containing Pericyte Medium (ScienCell), altered the phenotype of human brain pericytes and neuroinflammatory responses. METHODS: Pericytes were isolated from adult human brain biopsy tissue and cultured in DMEM/F12 (D-pericytes) or Pericyte Medium (P-pericytes). Immunocytochemistry, qRT-PCR, and EdU incorporation were used to determine how this altered their basal phenotype, including the expression of pericyte markers, proliferation, and cell morphology. To determine whether culture media altered the inflammatory response in human brain pericytes, immunocytochemistry, qRT-PCR, cytometric bead arrays, and flow cytometry were used to investigate transcription factor induction, chemokine secretion, adhesion molecule expression, migration, phagocytosis, and response to inflammatory-related growth factors. RESULTS: P-pericytes displayed elevated proliferation and a distinct bipolar morphology compared to D-pericytes. Additionally, P-pericytes displayed lower expression of pericyte-associated markers NG2, PDGFRß, and fibronectin, with notably lower αSMA, CD146, P4H and desmin, and higher Col-IV expression. Nuclear NF-kB translocation in response to IL-1ß stimulation was observed in both cultures, however, P-pericytes displayed elevated expression of the transcription factor C/EBPδ, and lower expression of the adhesion molecule ICAM-1. P-pericytes displayed elevated phagocytic and migratory ability. Both cultures responded similarly to stimulation by the growth factors TGFß1 and PDGF-BB. CONCLUSIONS: Despite differences in their phenotype and magnitude of response, both P-pericytes and D-pericytes responded similarly to all examined functions, indicating that the neuroinflammatory phenotype of these cells is robust to culture conditions.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/fisiologia , Regulação da Expressão Gênica/fisiologia , Pericitos/patologia , Pericitos/fisiologia , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Células Cultivadas , Citocinas/metabolismo , Fibronectinas/metabolismo , Humanos , Interleucina-1beta/metabolismo
10.
Exp Cell Res ; 355(1): 26-39, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341445

RESUMO

Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration.


Assuntos
Movimento Celular/efeitos dos fármacos , Insulina/farmacologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/antagonistas & inibidores , Animais , Bovinos , Relação Dose-Resposta a Droga , Humanos , Insulina/química , Pâncreas/química , Ácidos Siálicos/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
J Neuroinflammation ; 13: 37, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26867675

RESUMO

BACKGROUND: Transforming growth factor beta 1 (TGFß1) is strongly induced following brain injury and polarises microglia to an anti-inflammatory phenotype. Augmentation of TGFß1 responses may therefore be beneficial in preventing inflammation in neurological disorders including stroke and neurodegenerative diseases. However, several other cell types display immunogenic potential and identifying the effect of TGFß1 on these cells is required to more fully understand its effects on brain inflammation. Pericytes are multifunctional cells which ensheath the brain vasculature and have garnered recent attention with respect to their immunomodulatory potential. Here, we sought to investigate the inflammatory phenotype adopted by TGFß1-stimulated human brain pericytes. METHODS: Microarray analysis was performed to examine transcriptome-wide changes in TGFß1-stimulated pericytes, and results were validated by qRT-PCR and cytometric bead arrays. Flow cytometry, immunocytochemistry and LDH/Alamar Blue® viability assays were utilised to examine phagocytic capacity of human brain pericytes, transcription factor modulation and pericyte health. RESULTS: TGFß1 treatment of primary human brain pericytes induced the expression of several inflammatory-related genes (NOX4, COX2, IL6 and MMP2) and attenuated others (IL8, CX3CL1, MCP1 and VCAM1). A synergistic induction of IL-6 was seen with IL-1ß/TGFß1 treatment whilst TGFß1 attenuated the IL-1ß-induced expression of CX3CL1, MCP-1 and sVCAM-1. TGFß1 was found to signal through SMAD2/3 transcription factors but did not modify nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) translocation. Furthermore, TGFß1 attenuated the phagocytic ability of pericytes, possibly through downregulation of the scavenger receptors CD36, CD47 and CD68. Whilst TGFß did decrease pericyte number, this was due to a reduction in proliferation, not apoptotic death or compromised cell viability. CONCLUSIONS: TGFß1 attenuated pericyte expression of key chemokines and adhesion molecules involved in CNS leukocyte trafficking and the modulation of microglial function, as well as reduced the phagocytic ability of pericytes. However, TGFß1 also enhanced the expression of classical pro-inflammatory cytokines and enzymes which can disrupt BBB functioning, suggesting that pericytes adopt a phenotype which is neither solely pro- nor anti-inflammatory. Whilst the effects of pericyte modulation by TGFß1 in vivo are difficult to infer, the reduction in pericyte proliferation together with the elevated IL-6, MMP-2 and NOX4 and reduced phagocytosis suggests a detrimental action of TGFß1 on neurovasculature.


Assuntos
Encéfalo/citologia , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Pericitos/efeitos dos fármacos , Fagócitos/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Ciclo-Oxigenase 2/metabolismo , Humanos , Interleucina-1beta/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , NADPH Oxidase 4 , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Fatores de Tempo , Molécula 1 de Adesão de Célula Vascular/metabolismo
12.
J Neurochem ; 126(6): 758-70, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23844825

RESUMO

Cellular interactions mediated by the neural cell adhesion molecule (NCAM) are critical in cell migration, differentiation and plasticity. Switching of the NCAM-interaction mode, from adhesion to signalling, is determined by NCAM carrying a particular post-translational modification, polysialic acid (PSA). Regulation of cell-surface PSA-NCAM is traditionally viewed as a direct consequence of polysialyltransferase activity. Taking advantage of the polysialyltransferase Ca²âº-dependent activity, we demonstrate in TE671 cells that downregulation of PSA-NCAM synthesis constitutes a necessary but not sufficient condition to reduce cell-surface PSA-NCAM; instead, PSA-NCAM turnover required internalization of the molecule into the cytosol. PSA-NCAM internalization was specifically triggered by collagen in the extracellular matrix (ECM) and prevented by insulin-like growth factor (IGF1) and insulin. Our results pose a novel role for IGF1 and insulin in controlling cell migration through modulation of PSA-NCAM turnover at the cell surface. Neural cell adhesion molecules (NCAMs) are critically involved in cell differentiation and migration. Polysialylation (PSA)/desialylation of NCAMs switches their functional interaction mode and, in turn, migration and differentiation. We have found that the desialylation process of PSA-NCAM occurs via endocytosis, induced by collagen-IV and blocked by insulin-like growth factor (IGF1) and insulin, suggesting a novel association between PSA-NCAM, IGF1/insulin and brain/tumour plasticity.


Assuntos
Matriz Extracelular/metabolismo , Hipoglicemiantes/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Insulina/farmacologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Western Blotting , Cálcio/metabolismo , Linhagem Celular Tumoral , Colágeno Tipo IV/metabolismo , Endocitose/efeitos dos fármacos , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Processamento de Proteína Pós-Traducional , Reação em Cadeia da Polimerase em Tempo Real
13.
Chem Biol Drug Des ; 101(3): 696-716, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36323652

RESUMO

The development of chemotherapies for glioblastoma is hindered by their limited bioavailability and toxicity on normal brain function. To overcome these limitations, we investigated the structure-dependent activity of heptamethine cyanine dyes (HMCD), a group of tumour-specific and BBB permeable near-infrared fluorescent dyes, in both commercial (U87MG) and patient-derived GBM cell lines. HMCD analogues with strongly ionisable sulphonic acid groups were not taken up by patient-derived GBM cells, but were taken up by the U87MG cell line. HMCD uptake relies on a combination of transporter uptake through organic anion-transporting polypeptides (OATPs) and endocytosis into GBM cells. The uptake of HMCDs was not affected by p-glycoprotein efflux in GBM cells. Finally, we demonstrate structure-dependent cytotoxic activity at high concentrations (EC50 : 1-100 µM), likely due to mitochondrial damage-induced apoptosis. An in vivo orthotopic glioblastoma model highlights tumour-specific accumulation of our lead HMCD, MHI-148, for up to 7 days following a single intraperitoneal injection. These studies suggest that strongly ionisable groups like sulphonic acids hamper the cellular uptake of HMCDs in patient-derived GBM cell lines, highlighting cell line-specific differences in HMCD uptake. We envisage these findings will help in the design and structural modifications of HMCDs for drug-delivery applications for glioblastoma.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Corantes Fluorescentes , Neoplasias Encefálicas/tratamento farmacológico
14.
Front Neurosci ; 16: 994251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440264

RESUMO

Traumatic brain injury (TBI) is defined as brain damage due to an external force that negatively impacts brain function. Up to 90% of all TBI are considered in the mild severity range (mTBI) but there is still no therapeutic solution available. Therefore, further understanding of the mTBI pathology is required. To assist with this understanding, we developed a cell injury device (CID) based on a dielectric elastomer actuator (DEA), which is capable of modeling mTBI via injuring cultured cells with mechanical stretching. Our injury model is the first to use patient-derived brain pericyte cells, which are ubiquitous cells in the brain involved in injury response. Pericytes were cultured in our CIDs and mechanically strained up to 40%, and by at least 20%, prior to gene expression analysis. Our injury model is a platform capable of culturing and stretching primary human brain pericytes. The heterogeneous response in gene expression changes in our result may suggest that the genes implicated in pathological changes after mTBI could be a patient-dependent response, but requires further validation. The results of this study demonstrate that our CID is a suitable tool for simulating mTBI as an in vitro stretch injury model, that is sensitive enough to induce responses from primary human brain pericytes due to mechanical impacts.

15.
Nat Protoc ; 17(2): 190-221, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35022619

RESUMO

When modeling disease in the laboratory, it is important to use clinically relevant models. Patient-derived human brain cells grown in vitro to study and test potential treatments provide such a model. Here, we present simple, highly reproducible coordinated procedures that can be used to routinely culture most cell types found in the human brain from single neurosurgically excised brain specimens. The cell types that can be cultured include dissociated cultures of neurons, astrocytes, microglia, pericytes and brain endothelial and neural precursor cells, as well as explant cultures of the leptomeninges, cortical slice cultures and brain tumor cells. The initial setup of cultures takes ~2 h, and the cells are ready for further experiments within days to weeks. The resulting cells can be studied as purified or mixed population cultures, slice cultures and explant-derived cultures. This protocol therefore enables the investigation of human brain cells to facilitate translation of neuroscience research to the clinic.


Assuntos
Células-Tronco Neurais
16.
PLoS One ; 17(11): e0277658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36399706

RESUMO

Parkinson's disease (PD) is a progressive, neurodegenerative disorder characterised by the abnormal accumulation of α-synuclein (α-syn) aggregates. Central to disease progression is the gradual spread of pathological α-syn. α-syn aggregation is closely linked to progressive neuron loss. As such, clearance of α-syn aggregates may slow the progression of PD and lead to less severe symptoms. Evidence is increasing that non-neuronal cells play a role in PD and other synucleinopathies such as Lewy body dementia and multiple system atrophy. Our previous work has shown that pericytes-vascular mural cells that regulate the blood-brain barrier-contain α-syn aggregates in human PD brains. Here, we demonstrate that pericytes efficiently internalise fibrillar α-syn irrespective of being in a monoculture or mixed neuronal cell culture. Pericytes cleave fibrillar α-syn aggregates (Fibrils, Ribbons, fibrils65, fibrils91 and fibrils110), with cleaved α-syn remaining present for up to 21 days. The number of α-syn aggregates/cell and average aggregate size depends on the type of strain, but differences disappear within 5 five hours of treatment. Our results highlight the role brain vasculature may play in reducing α-syn aggregate burden in PD.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Pericitos/metabolismo , Doença por Corpos de Lewy/metabolismo , Doença de Parkinson/patologia , Neurônios/metabolismo
17.
Methods Mol Biol ; 2389: 125-154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34558008

RESUMO

The discovery, in 1998, that the adult human brain contains at least two populations of progenitor cells and that progenitor cells are upregulated in response to a range of degenerative brain diseases has raised hopes for their use in replacing dying brain cells. Since these early findings, the race has been on to understand the biology of progenitor cells in the human brain, and they have now been isolated and studied in many major neurodegenerative diseases. Before these cells can be exploited for cell replacement purposes, it is important to understand how to (1) locate them, (2) label them, (3) determine what receptors they express, (4) isolate them, and (5) examine their electrophysiological properties when differentiated. In this chapter we have described the methods we use for studying progenitor cells in the adult human brain and in particular the tissue processing, immunohistochemistry, autoradiography, progenitor cell culture, and electrophysiology on brain cells. The Neurological Foundation of New Zealand Human Brain Bank has been receiving human tissue for approximately 25 years during which time we have developed a number of unique ways to examine and isolate progenitor cells from resected surgical specimens as well as from postmortem brain tissue. There are ethical and technical considerations that are unique to working with human brain tissue, and these, as well as the processing of this tissue and the culturing of it for the purpose of studying progenitor cells, are the topic of this chapter.


Assuntos
Células-Tronco Neurais , Adulto , Células-Tronco Adultas , Encéfalo , Técnicas de Cultura de Células , Diferenciação Celular , Humanos , Imuno-Histoquímica
18.
Neurooncol Adv ; 4(1): vdac166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36382105

RESUMO

Background: Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. Whilst the role of the efflux transporters are well established in GBM, the expression and function of uptake transporters, such as the organic anion transporting polypeptide (OATP) family, are not well understood. OATPs possess broad substrate specificity that includes anti-cancer agents; therefore, we sought to investigate the expression of four OATP isoforms in human GBM cell types using patient tumor tissue. Methods: We used fluorescent immunohistochemical labeling of paraffin-embedded surgically resected tissues and single-cell image analysis methods to explore the expression of the OATP isoforms in different tumor cell types through co-labeling with cell-type specific markers, such as IBA1 (pan-myeloid), GFAP (tumor cell), PDGFRß (stromal cell), and UEA-1-lectin (endothelial). Results: We found significant over-expression of all the OATP isoforms (OATP1A2, 2B1, 1C1 and 4A1) in GBM tumor sections when compared to non-neoplastic brain. A single-cell image analysis revealed that OATPs were significantly upregulated throughout the tumor parenchyma, with significantly higher expression found on lectin-positive blood vessels and IBA1-positive myeloid cells in GBM compared to non-tumor brain tissue. Qualitative analysis of the four OATP isoforms demonstrated greater expression of OATP4A1 in peri-necrotic regions of GBM tissue, which correlated with hypoxia-related markers within the Ivy GAP RNAseq dataset. Conclusion: Here, we demonstrate, for the first time, the protein expression of four OATPs in human GBM tissue, including upregulation within the tumor microenvironment by myeloid cells and tumor vasculature, and isoform-specific upregulation within hypoxic niches.

19.
Commun Biol ; 5(1): 235, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301433

RESUMO

Platelet-derived growth factor-BB (PDGF-BB):PDGF receptor-ß (PDGFRß) signalling in brain pericytes is critical to the development, maintenance and function of a healthy blood-brain barrier (BBB). Furthermore, BBB impairment and pericyte loss in Alzheimer's disease (AD) is well documented. We found that PDGF-BB:PDGFRß signalling components were altered in human AD brains, with a marked reduction in vascular PDGFB. We hypothesised that reduced PDGF-BB:PDGFRß signalling in pericytes may impact on the BBB. We therefore tested the effects of PDGF-BB on primary human brain pericytes in vitro to define pathways related to BBB function. Using pharmacological inhibitors, we dissected distinct aspects of the PDGF-BB response that are controlled by extracellular signal-regulated kinase (ERK) and Akt pathways. PDGF-BB promotes the proliferation of pericytes and protection from apoptosis through ERK signalling. In contrast, PDGF-BB:PDGFRß signalling through Akt augments pericyte-derived inflammatory secretions. It may therefore be possible to supplement PDGF-BB signalling to stabilise the cerebrovasculature in AD.


Assuntos
Doença de Alzheimer , Pericitos , Doença de Alzheimer/metabolismo , Becaplermina/metabolismo , Becaplermina/farmacologia , Encéfalo/metabolismo , Humanos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/farmacologia
20.
Front Oncol ; 11: 654921, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141613

RESUMO

Effective cancer therapeutics for brain tumors must be able to cross the blood-brain barrier (BBB) to reach the tumor in adequate quantities and overcome the resistance conferred by the local tumor microenvironment. Clinically approved chemotherapeutic agents have been investigated for brain neoplasms, but despite their effectiveness in peripheral cancers, failed to show therapeutic success in brain tumors. This is largely due to their poor bioavailability and specificity towards brain tumors. A targeted delivery system might improve the efficacy of the candidate compounds by increasing the retention time in the tumor tissue, and minimizing the numerous side effects associated with the non-specific distribution of the chemotherapy agent. Heptamethine cyanine dyes (HMCDs) are a class of near-infrared fluorescence (NIRF) compounds that have recently emerged as promising agents for drug delivery. Initially explored for their use in imaging and monitoring neoplasms, their tumor-targeting properties have recently been investigated for their use as drug carrier systems. This review will explore the recent developments in the tumour-targeting properties of a specific group of NIRF cyanine dyes and the preclinical evidence for their potential as drug-delivery systems in the treatment of primary and metastatic brain tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA