Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Pathog ; 19(10): e1011682, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782657

RESUMO

Human cytomegalovirus (HCMV) encodes multiple putative G protein-coupled receptors (GPCRs). US28 functions as a viral chemokine receptor and is expressed during both latent and lytic phases of virus infection. US28 actively promotes cellular migration, transformation, and plays a major role in mediating viral latency and reactivation; however, knowledge about the interaction partners involved in these processes is still incomplete. Herein, we utilized a proximity-dependent biotinylating enzyme (TurboID) to characterize the US28 interactome when expressed in isolation, and during both latent (CD34+ hematopoietic progenitor cells) and lytic (fibroblasts) HCMV infection. Our analyses indicate that the US28 signalosome converges with RhoA and EGFR signal transduction pathways, sharing multiple mediators that are major actors in processes such as cellular proliferation and differentiation. Integral members of the US28 signaling complex were validated in functional assays by immunoblot and small-molecule inhibitors. Importantly, we identified RhoGEFs as key US28 signaling intermediaries. In vitro latency and reactivation assays utilizing primary CD34+ hematopoietic progenitor cells (HPCs) treated with the small-molecule inhibitors Rhosin or Y16 indicated that US28 -RhoGEF interactions are required for efficient viral reactivation. These findings were recapitulated in vivo using a humanized mouse model where inhibition of RhoGEFs resulted in a failure of the virus to reactivate. Together, our data identifies multiple new proteins in the US28 interactome that play major roles in viral latency and reactivation, highlights the utility of proximity-sensor labeling to characterize protein interactomes, and provides insight into targets for the development of novel anti-HCMV therapeutics.


Assuntos
Citomegalovirus , Transdução de Sinais , Animais , Camundongos , Humanos , Citomegalovirus/fisiologia , Latência Viral , Diferenciação Celular , Células-Tronco Hematopoéticas
2.
J Virol ; 97(10): e0124123, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772824

RESUMO

IMPORTANCE: CD34+ hematopoietic progenitor cells (HPCs) are an important cellular reservoir for latent human cytomegalovirus (HCMV). Several HCMV genes are expressed during latency that are involved with the maintenance of the viral genome in CD34+ HPC. However, little is known about the process of viral reactivation in these cells. Here, we describe a viral protein, pUL8, and its interaction and stabilization with members of the Wnt/ß-catenin pathway as an important component of viral reactivation. We further define that pUL8 and ß-catenin interact with DVL2 via a PDZ-binding domain, and loss of UL8 interaction with ß-catenin-DVL2 restricts viral reactivation. Our findings will be instrumental in understanding the molecular processes involved in HCMV reactivation in order to design new antiviral therapeutics.


Assuntos
Antígenos CD34 , Citomegalovirus , Proteínas Desgrenhadas , Células-Tronco Hematopoéticas , Proteínas Virais , Ativação Viral , beta Catenina , Humanos , Antígenos CD34/metabolismo , beta Catenina/química , beta Catenina/metabolismo , Citomegalovirus/genética , Citomegalovirus/fisiologia , Proteínas Desgrenhadas/química , Proteínas Desgrenhadas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/virologia , Domínios PDZ , Proteínas Virais/química , Proteínas Virais/metabolismo , Latência Viral/genética
4.
PLoS Pathog ; 13(3): e1006219, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28278237

RESUMO

Zika virus (ZIKV), an emerging flavivirus, has recently spread explosively through the Western hemisphere. In addition to symptoms including fever, rash, arthralgia, and conjunctivitis, ZIKV infection of pregnant women can cause microcephaly and other developmental abnormalities in the fetus. We report herein the results of ZIKV infection of adult rhesus macaques. Following subcutaneous infection, animals developed transient plasma viremia and viruria from 1-7 days post infection (dpi) that was accompanied by the development of a rash, fever and conjunctivitis. Animals produced a robust adaptive immune response to ZIKV, although systemic cytokine response was minimal. At 7 dpi, virus was detected in peripheral nervous tissue, multiple lymphoid tissues, joints, and the uterus of the necropsied animals. Notably, viral RNA persisted in neuronal, lymphoid and joint/muscle tissues and the male and female reproductive tissues through 28 to 35 dpi. The tropism and persistence of ZIKV in the peripheral nerves and reproductive tract may provide a mechanism of subsequent neuropathogenesis and sexual transmission.


Assuntos
Infecção por Zika virus/patologia , Infecção por Zika virus/virologia , Animais , Separação Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Hibridização In Situ , Macaca mulatta , Masculino , Testes de Neutralização , Reação em Cadeia da Polimerase , Viremia/virologia , Zika virus
5.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826434

RESUMO

HCMV genes UL135 and UL138 play opposing roles regulating latency and reactivation in CD34+ human progenitor cells (HPCs). Using the THP-1 cell line model for latency and reactivation, we designed an RNA sequencing study to compare the transcriptional profile of HCMV infection in the presence and absence of these genes. The loss of UL138 results in elevated levels of viral gene expression and increased differentiation of cell populations that support HCMV gene expression and genome synthesis. The loss of UL135 results in diminished viral gene expression during an initial burst that occurs as latency is established and no expression of eleven viral genes from the ULb' region even following stimulation for differentiation and reactivation. Transcriptional network analysis revealed host transcription factors with potential to regulate the ULb' genes in coordination with pUL135. These results reveal roles for UL135 and UL138 in regulation of viral gene expression and potentially hematopoietic differentiation.

6.
PLoS One ; 15(1): e0227676, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31935257

RESUMO

Zika virus infection during pregnancy is associated with miscarriage and with a broad spectrum of fetal and neonatal developmental abnormalities collectively known as congenital Zika syndrome (CZS). Symptomology of CZS includes malformations of the brain and skull, neurodevelopmental delay, seizures, joint contractures, hearing loss and visual impairment. Previous studies of Zika virus in pregnant rhesus macaques (Macaca mulatta) have described injury to the developing fetus and pregnancy loss, but neonatal outcomes following fetal Zika virus exposure have yet to be characterized in nonhuman primates. Herein we describe the presentation of rhesus macaque neonates with a spectrum of clinical outcomes, including one infant with CZS-like symptoms including cardiomyopathy, motor delay and seizure activity following maternal infection with Zika virus during the first trimester of pregnancy. Further characterization of this neonatal nonhuman primate model of gestational Zika virus infection will provide opportunities to evaluate the efficacy of pre- and postnatal therapeutics for gestational Zika virus infection and CZS.


Assuntos
Modelos Animais de Doenças , Infecção por Zika virus/veterinária , Zika virus/patogenicidade , Animais , Cardiomiopatias/virologia , Feminino , Feto/virologia , Macaca mulatta , Microcefalia/virologia , Gravidez , Complicações Infecciosas na Gravidez/veterinária , Complicações Infecciosas na Gravidez/virologia , Primeiro Trimestre da Gravidez , Convulsões/virologia , Infecção por Zika virus/virologia
7.
Antiviral Res ; 155: 12-19, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29709563

RESUMO

Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions and cause significant morbidity and mortality worldwide. Although a partially effective vaccine is in use in several countries in which DENV are endemic, no antiviral therapeutics are approved for combating DENV-associated disease. Herein, we report the characterization of novel small molecule inhibitors of DENV replication, VGTI-A3 and VGTI-A3-03, as well as structure-activity relationship analysis of the molecules using a panel of chemical analogs. VGTI-A3 and VGTI-A3-03 are highly virus-specific, with greatest activity against DENV serotype 2. Further analysis revealed that treatment of infected cells with VGTI-A3-03 does not inhibit viral RNA replication or secretion of viral particles. Rather, the infectivity of secreted particles from A3-03 treated cells is significantly diminished compared to particles secreted from control cells. Elicitation of VGTI-A3-03-resistant mutants demonstrated a clear binding pocket in the capsid molecule at the dimerization interface. Additionally, we show that VGTI-A3-03 is incorporated into virus particles released from infected cells. In summary, these data provide detailed analysis of a potentially useful class of anti-DENV inhibitors and further identify a region of the viral capsid protein as a druggable target for other therapeutic approaches.


Assuntos
Antivirais/química , Proteínas do Capsídeo/metabolismo , Vírus da Dengue/efeitos dos fármacos , Vírion/efeitos dos fármacos , Antivirais/farmacologia , Capsídeo/efeitos dos fármacos , Dengue/virologia , Células HEK293 , Humanos , Mutagênese , Ligação Proteica , RNA Viral , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
8.
Nat Commun ; 9(1): 263, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343712

RESUMO

Zika virus (ZIKV) infection during pregnancy leads to an increased risk of fetal growth restriction and fetal central nervous system malformations, which are outcomes broadly referred to as the Congenital Zika Syndrome (CZS). Here we infect pregnant rhesus macaques and investigate the impact of persistent ZIKV infection on uteroplacental pathology, blood flow, and fetal growth and development. Despite seemingly normal fetal growth and persistent fetal-placenta-maternal infection, advanced non-invasive in vivo imaging studies reveal dramatic effects on placental oxygen reserve accompanied by significantly decreased oxygen permeability of the placental villi. The observation of abnormal oxygen transport within the placenta appears to be a consequence of uterine vasculitis and placental villous damage in ZIKV cases. In addition, we demonstrate a robust maternal-placental-fetal inflammatory response following ZIKV infection. This animal model reveals a potential relationship between ZIKV infection and uteroplacental pathology that appears to affect oxygen delivery to the fetus during development.


Assuntos
Placenta/metabolismo , Circulação Placentária , Complicações Infecciosas na Gravidez/imunologia , Infecção por Zika virus/imunologia , Imunidade Adaptativa , Animais , Encéfalo/embriologia , Encéfalo/patologia , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Desenvolvimento Fetal , Feto/patologia , Imunidade Inata , Macaca mulatta , Imageamento por Ressonância Magnética , Oxigênio/metabolismo , Permeabilidade , Placenta/imunologia , Placenta/patologia , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez/metabolismo , Complicações Infecciosas na Gravidez/patologia , Complicações Infecciosas na Gravidez/fisiopatologia , Carga Viral , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia , Infecção por Zika virus/fisiopatologia
9.
Sci Rep ; 6: 21674, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876974

RESUMO

Ebolaviruses pose significant public health problems due to their high lethality, unpredictable emergence, and localization to the poorest areas of the world. In addition to implementation of standard public health control procedures, a number of experimental human vaccines are being explored as a further means for outbreak control. Recombinant cytomegalovirus (CMV)-based vectors are a novel vaccine platform that have been shown to induce substantial levels of durable, but primarily T-cell-biased responses against the encoded heterologous target antigen. Herein, we demonstrate the ability of rhesus CMV (RhCMV) expressing Ebola virus (EBOV) glycoprotein (GP) to provide protective immunity to rhesus macaques against lethal EBOV challenge. Surprisingly, vaccination was associated with high levels of GP-specific antibodies, but with no detectable GP-directed cellular immunity.


Assuntos
Citomegalovirus/genética , Portadores de Fármacos , Vacinas contra Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/genética , Feminino , Macaca mulatta , Masculino , Análise de Sobrevida , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética
10.
Vaccine ; 33(19): 2261-2266, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25820063

RESUMO

Ebola virus (Zaire ebolavirus; EBOV) is a highly lethal hemorrhagic disease virus that most recently was responsible for two independent 2014 outbreaks in multiple countries in Western Africa, and the Democratic Republic of the Congo, respectively. Herein, we show that a cytomegalovirus (CMV)-based vaccine provides durable protective immunity from Ebola virus following a single vaccine dose. This study has implications for human vaccination against ebolaviruses, as well as for development of a 'disseminating' vaccine to target these viruses in wild African great apes.


Assuntos
Citomegalovirus/genética , Ebolavirus/imunologia , Vetores Genéticos , Doença pelo Vírus Ebola/prevenção & controle , Vacinação/métodos , Vacinas Virais/imunologia , Animais , Peso Corporal , Modelos Animais de Doenças , Feminino , Doença pelo Vírus Ebola/imunologia , Camundongos Endogâmicos C57BL , Análise de Sobrevida , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
11.
Vaccine ; 30(20): 3047-52, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22414558

RESUMO

The current commercially available vaccine used to prevent tetanus disease following infection with the anaerobic bacterium Clostridium tetani is safe and effective. However, tetanus remains a major source of mortality in developing countries. In 2008, neonatal tetanus was estimated to have caused >59,000 deaths, accounting for 1% of worldwide infant mortality, primarily in poorer nations. The cost of multiple vaccine doses administered by injection necessary to achieve protective levels of anti-tetanus toxoid antibodies is the primary reason for low vaccine coverage. Herein, we show that a novel vaccine strategy using a cytomegalovirus (CMV)-based vaccine platform induces protective levels of anti-tetanus antibodies that are durable (lasting >13 months) in mice following only a single dose. This study demonstrates the ability of a 'single-dose' CMV-based vaccine strategy to induce durable protection, and supports the potential for a tetanus vaccine based on CMV to impact the incidence of tetanus in developing countries.


Assuntos
Anticorpos Antibacterianos/sangue , Antitoxinas/sangue , Citomegalovirus/genética , Vetores Genéticos , Fragmentos de Peptídeos/imunologia , Toxina Tetânica/imunologia , Toxoide Tetânico/imunologia , Tétano/prevenção & controle , Animais , Modelos Animais de Doenças , Camundongos , Fragmentos de Peptídeos/genética , Toxina Tetânica/genética , Toxoide Tetânico/administração & dosagem , Toxoide Tetânico/genética
12.
J Immunother ; 35(5): 390-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22576344

RESUMO

Cytomegalovirus (CMV) is a highly immunogenic virus that results in a persistent, life-long infection in the host typically with no ill effects. Certain unique features of CMV, including its capacity to actively replicate in the presence of strong host CMV-specific immunity, may give CMV an advantage compared with other virus-based vaccine delivery platforms. In the present study, we tested the utility of mouse CMV (mCMV)-based vaccines expressing human prostate-specific antigen (PSA) for prostate cancer immunotherapy in double-transgenic mice expressing PSA and HLA-DRB1*1501 (DR2bxPSA F1 mice). We assessed the capacity of 2 mCMV-based vectors to induce PSA-specific CD8 T-cell responses and affect the growth of PSA-expressing Transgenic Adenocarcinoma of the Mouse Prostate tumors (TRAMP-PSA). In the absence of tumor challenge, immunization with mCMV vectors expressing either a H2-D(b)-restricted epitope PSA(65-73) (mCMV/PSA(65-73)) or the full-length gene for PSA (mCMV/PSA(FL)) induced comparable levels of CD8 T-cell responses that increased (inflated) with time. Upon challenge with TRAMP-PSA tumor cells, animals immunized with mCMV/PSA(65-73) had delay of tumor growth and increased PSA-specific CD8 T-cell responses, whereas animals immunized with mCMV/PSA(FL) showed progressive tumor growth and no increase in number of splenic PSA(65-73)-specific T cells. The data show that a prototype CMV-based prostate cancer vaccine can induce an effective antitumor immune response in a "humanized" double-transgenic mouse model. The observation that mCMV/PSA(FL) is not effective against TRAMP-PSA is consistent with our previous findings that HLA-DRB1*1501-restricted immune responses to PSA are associated with suppression of effective CD8 T-cell responses to TRAMP-PSA tumors.


Assuntos
Adenocarcinoma/prevenção & controle , Vacinas Anticâncer/imunologia , Citomegalovirus/imunologia , Epitopos de Linfócito T/imunologia , Cadeias HLA-DRB1/imunologia , Antígeno Prostático Específico/imunologia , Neoplasias da Próstata/prevenção & controle , Adenocarcinoma/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Proliferação de Células , Citomegalovirus/genética , Modelos Animais de Doenças , Epitopos de Linfócito T/genética , Expressão Gênica , Cadeias HLA-DRB1/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fases de Leitura Aberta , Antígeno Prostático Específico/genética , Neoplasias da Próstata/imunologia , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia , Carga Tumoral , Vacinação
13.
PLoS Negl Trop Dis ; 5(8): e1275, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21858240

RESUMO

BACKGROUND: Human outbreaks of Ebola virus (EBOV) are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees) are an important source of EBOV transmission to humans due to increased hunting of wildlife including the 'bush-meat' trade. Cytomegalovirus (CMV) is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a 'proof-of-concept' for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV) vector expressing a CD8+ T cell epitope from the nucleoprotein (NP) of Zaire ebolavirus (ZEBOV) (MCMV/ZEBOV-NP(CTL)). MCMV/ZEBOV-NP(CTL) induced high levels of long-lasting (>8 months) CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for 'disseminating' CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Epitopos de Linfócito T/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Muromegalovirus/genética , Nucleoproteínas/imunologia , Vacinas Sintéticas/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Portadores de Fármacos , Vacinas contra Ebola/administração & dosagem , Ebolavirus/genética , Epitopos de Linfócito T/genética , Feminino , Vetores Genéticos , Camundongos , Camundongos Endogâmicos C57BL , Muromegalovirus/crescimento & desenvolvimento , Nucleoproteínas/genética , Linfócitos T Citotóxicos/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA