Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
HPB (Oxford) ; 25(11): 1323-1328, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37453814

RESUMO

BACKGROUND: The historical standard of care in treating operable pancreatic cancer via upfront surgery has been challenged recently using a neoadjuvant approach. The aim of the study is to examine the national practice patterns in the management of pancreatic cancer with an emphasis on the trends of neoadjuvant systemic therapy use. METHODS: This is a cross-sectional time-series study using the National Cancer Database from 2006 to 2019. Patients who underwent resection for stage I-II pancreatic adenocarcinoma were selected. RESULTS: Overall, 25% of patients had neoadjuvant chemotherapy, 49% had surgery followed by adjuvant chemotherapy and 26% had surgery alone. The rate of neoadjuvant chemotherapy has increased from 11% in 2006 to 43% in 2019. There was a decrease in the rate of surgery followed by chemotherapy from 48% to 38%, and a decrease in the rate of surgery alone from 41% to 19%. The rate of radiation therapy use has decreased over time, as has the resection rate, while median overall survival has steadily improved over the years. CONCLUSIONS: In 2019, the rate of using neoadjuvant systemic therapy overtook the rate of surgery first followed by adjuvant systemic therapy, marking a pragmatic national shift in the clinical management of pancreatic cancer.

2.
Gastroenterology ; 160(5): 1725-1740.e2, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33309778

RESUMO

BACKGROUND & AIMS: We recently showed that alcoholic hepatitis (AH) is characterized by dedifferentiation of hepatocytes and loss of mature functions. Glucose metabolism is tightly regulated in healthy hepatocytes. We hypothesize that AH may lead to metabolic reprogramming of the liver, including dysregulation of glucose metabolism. METHODS: We performed integrated metabolomic and transcriptomic analyses of liver tissue from patients with AH or alcoholic cirrhosis or normal liver tissue from hepatic resection. Focused analyses of chromatin immunoprecipitation coupled to DNA sequencing was performed. Functional in vitro studies were performed in primary rat and human hepatocytes and HepG2 cells. RESULTS: Patients with AH exhibited specific changes in the levels of intermediates of glycolysis/gluconeogenesis, the tricarboxylic acid cycle, and monosaccharide and disaccharide metabolism. Integrated analysis of the transcriptome and metabolome showed the used of alternate energetic pathways, metabolite sinks and bottlenecks, and dysregulated glucose storage in patients with AH. Among genes involved in glucose metabolism, hexokinase domain containing 1 (HKDC1) was identified as the most up-regulated kinase in patients with AH. Histone active promoter and enhancer markers were increased in the HKDC1 genomic region. High HKDC1 levels were associated with the development of acute kidney injury and decreased survival. Increased HKDC1 activity contributed to the accumulation of glucose-6-P and glycogen in primary rat hepatocytes. CONCLUSIONS: Altered metabolite levels and messenger RNA expression of metabolic enzymes suggest the existence of extensive reprogramming of glucose metabolism in AH. Increased HKDC1 expression may contribute to dysregulated glucose metabolism and represents a novel biomarker and therapeutic target for AH.


Assuntos
Desdiferenciação Celular , Metabolismo Energético , Perfilação da Expressão Gênica , Glucose/metabolismo , Hepatite Alcoólica/enzimologia , Hepatócitos/enzimologia , Hexoquinase/metabolismo , Fígado/enzimologia , Metabolômica , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/genética , Adaptação Fisiológica , Animais , Europa (Continente) , Feminino , Regulação Enzimológica da Expressão Gênica , Glucose-6-Fosfato/metabolismo , Glicogênio/metabolismo , Células Hep G2 , Hepatite Alcoólica/genética , Hepatite Alcoólica/patologia , Hepatócitos/patologia , Hexoquinase/genética , Humanos , Fígado/patologia , Masculino , Metaboloma , Pessoa de Meia-Idade , Ratos Wistar , Transcriptoma , Estados Unidos
3.
Physiol Genomics ; 53(12): 546-555, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34796728

RESUMO

Impaired liver regeneration has been considered as a hallmark of progression of alcohol-associated liver disease. Our previous studies demonstrated that in vivo inhibition of the microRNA (miRNA) miR21 can restore regenerative capacity of the liver in chronic ethanol-fed animals. The present study focuses on the role of microRNA regulatory networks that are likely to mediate the miR-21 action. Rats were chronically fed an ethanol-enriched diet along with pair-fed control animals and treated with AM21 (anti-miR-21), a locked nucleic acid antisense to miR-21. Partial hepatectomy (PHx) was performed and miRNA expression profiling over the course of liver regeneration was assessed. Our results showed dynamic expression changes in several miRNAs after PHx, notably with altered miRNA expression profiles between ethanol and control groups. We found that in vivo inhibition of miR-21 led to correlated differential expression of miR-340-5p and anticorrelated expression of miR-365, let-7a, miR-1224, and miR-146a across all sample groups after PHx. Gene set enrichment analysis identified a miRNA signature significantly associated with hepatic stellate cell activation within whole liver tissue data. We hypothesized that at least part of the PHx-induced miRNA network changes responsive to miR-21 inhibition is localized to hepatic stellate cells. We validated this hypothesis using AM21 and TGF-ß treatments in LX-2 human hepatic stellate cells in culture and measured expression levels of select miRNAs by quantitative RT-PCR. Based on the in vivo and in vitro results, we propose a hepatic stellate cell miRNA regulatory network as contributing to the restoration of liver regenerative capacity by miR-21 inhibition.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Etanol/efeitos adversos , Redes Reguladoras de Genes/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Regeneração Hepática/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Animais , Linhagem Celular , Dieta/métodos , Modelos Animais de Doenças , Hepatectomia/métodos , Humanos , Hepatopatias Alcoólicas/cirurgia , Masculino , MicroRNAs/antagonistas & inibidores , Oligonucleotídeos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Transfecção , Fator de Crescimento Transformador beta/farmacologia
4.
J Mol Cell Cardiol ; 132: 13-23, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31071333

RESUMO

Dilated cardiomyopathy (DCM) is the third most common cause of heart failure, with ~70% of DCM cases considered idiopathic. We showed recently, through genetic ablation of the MGAT1 gene, which encodes an essential glycosyltransferase (GlcNAcT1), that prevention of cardiomyocyte hybrid/complex N-glycosylation was sufficient to cause DCM that led to heart failure and early death. Our findings are consistent with increasing evidence suggesting a link between aberrant glycosylation and heart diseases of acquired and congenital etiologies. However, the mechanisms by which changes in glycosylation contribute to disease onset and progression remain largely unknown. Activity and gating of voltage-gated Na+ and K+ channels (Nav and Kv respectively) play pivotal roles in the initiation, shaping and conduction of cardiomyocyte action potentials (APs) and aberrant channel activity was shown to contribute to cardiac disease. We and others showed that glycosylation can impact Nav and Kv function; therefore, here, we investigated the effects of reduced cardiomyocyte hybrid/complex N-glycosylation on channel activity to investigate whether chronic aberrant channel function can contribute to DCM. Ventricular cardiomyocytes from MGAT1 deficient (MGAT1KO) mice display prolonged APs and pacing-induced aberrant early re-activation that can be attributed to, at least in part, a significant reduction in Kv expression and activity that worsens over time suggesting heart disease-related remodeling. MGAT1KO Nav demonstrate no change in expression or maximal conductance but show depolarizing shifts in voltage-dependent gating. Together, the changes in MGAT1KO Nav and Kv function likely contribute to observed anomalous electrocardiograms and Ca2+ handling. These findings provide insight into mechanisms by which altered glycosylation contributes to DCM through changes in Nav and Kv activity that impact conduction, Ca2+ handling and contraction. The MGAT1KO can also serve as a useful model to study the effects of aberrant electrical signaling on cardiac function and the remodeling events that can occur with heart disease progression.


Assuntos
Potenciais de Ação , Cálcio/metabolismo , Cardiomiopatia Dilatada/patologia , Modelos Animais de Doenças , Miócitos Cardíacos/patologia , N-Acetilglucosaminiltransferases/fisiologia , Potássio/metabolismo , Animais , Cardiomiopatia Dilatada/metabolismo , Eletrofisiologia , Glicosilação , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo
5.
Sci Rep ; 10(1): 15558, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968110

RESUMO

Advanced fibrosis and portal hypertension influence short-term mortality. Lipocalin 2 (LCN2) regulates infection response and increases in liver injury. We explored the role of intrahepatic LCN2 in human alcoholic hepatitis (AH) with advanced fibrosis and portal hypertension and in experimental mouse fibrosis. We found hepatic LCN2 expression and serum LCN2 level markedly increased and correlated with disease severity and portal hypertension in patients with AH. In control human livers, LCN2 expressed exclusively in mononuclear cells, while its expression was markedly induced in AH livers, not only in mononuclear cells but also notably in hepatocytes. Lcn2-/- mice were protected from liver fibrosis caused by either ethanol or CCl4 exposure. Microarray analysis revealed downregulation of matrisome, cell cycle and immune related gene sets in Lcn2-/- mice exposed to CCl4, along with decrease in Timp1 and Edn1 expression. Hepatic expression of COL1A1, TIMP1 and key EDN1 system components were elevated in AH patients and correlated with hepatic LCN2 expression. In vitro, recombinant LCN2 induced COL1A1 expression. Overexpression of LCN2 increased HIF1A that in turn mediated EDN1 upregulation. LCN2 contributes to liver fibrosis and portal hypertension in AH and could represent a new therapeutic target.


Assuntos
Colágeno Tipo I/genética , Hepatite Alcoólica/genética , Lipocalina-2/genética , Cirrose Hepática/genética , Animais , Tetracloreto de Carbono/toxicidade , Cadeia alfa 1 do Colágeno Tipo I , Modelos Animais de Doenças , Etanol/toxicidade , Feminino , Regulação da Expressão Gênica/genética , Hepatite Alcoólica/sangue , Hepatite Alcoólica/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Hipertensão Portal/sangue , Hipertensão Portal/genética , Hipertensão Portal/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/sangue , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Knockout , Análise em Microsséries/métodos , Inibidor Tecidual de Metaloproteinase-1/genética
6.
PLoS One ; 10(10): e0140236, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26452159

RESUMO

NF-κB is a major inflammatory response mediator in the liver, playing a key role in the pathogenesis of alcoholic liver injury. We investigated zonal as well as liver cell type-specific distribution of NF-κB activation across the liver acinus following adaptation to chronic ethanol intake and 70% partial hepatectomy (PHx). We employed immunofluorescence staining, digital image analysis and statistical distributional analysis to quantify subcellular localization of NF-κB in hepatocytes and hepatic stellate cells (HSCs). We detected significant spatial heterogeneity of NF-κB expression and cellular localization between cytoplasm and nucleus across liver tissue. Our main aims involved investigating the zonal bias in NF-κB localization and determining to what extent chronic ethanol intake affects this zonal bias with in hepatocytes at baseline and post-PHx. Hepatocytes in the periportal area showed higher NF-κB expression than in the pericentral region in the carbohydrate-fed controls, but not in the ethanol group. However, the distribution of NF-κB nuclear localization in hepatocytes was shifted towards higher levels in pericentral region than in periportal area, across all treatment conditions. Chronic ethanol intake shifted the NF-κB distribution towards higher nuclear fraction in hepatocytes as compared to the pair-fed control group. Ethanol also stimulated higher NF-κB expression in a subpopulation of HSCs. In the control group, PHx elicited a shift towards higher NF-κB nuclear fraction in hepatocytes. However, this distribution remained unchanged in the ethanol group post-PHx. HSCs showed a lower NF-κB expression following PHx in both ethanol and control groups. We conclude that adaptation to chronic ethanol intake attenuates the liver zonal variation in NF-κB expression and limits the PHx-induced NF-κB activation in hepatocytes, but does not alter the NF-κB expression changes in HSCs in response to PHx. Our findings provide new insights as to how ethanol treatment may affect cell-type specific processes regulated by NF-κB activation in liver cells.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Etanol/farmacologia , Hepatectomia , Fígado/citologia , Fígado/efeitos dos fármacos , NF-kappa B/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Fígado/cirurgia , Masculino , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA