Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hematol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860642

RESUMO

There is growing interest in multiple myeloma (MM) circulating tumor cells (CTCs), but their rareness in peripheral blood (PB) and inconsistency in cutoffs question their clinical utility. Herein, we applied next-generation flow cytometry in 550 bone marrow (BM) and matched PB samples to define an optimal CTC cutoff for both transplant-eligible and transplant-ineligible newly diagnosed MM (NDMM) patients. Deep phenotyping was performed to investigate unique microenvironmental features associated with CTC dissemination. CTCs were detected in 90% of patients (median 0.01%; range: 0.0002%-12.6%) and increased levels associated with adverse features. Correlations were observed between high CTC percentages and a diffused MRI pattern, a distinct BM composition characterized by altered B-cell differentiation together with an expansion of effector cells and tumor-associated macrophages, as well as a greater phenotypic dissimilarity between BM and PB clonal cells. Progression-free survival (PFS) and overall survival (OS) gradually worsened with each logarithmic increment of CTCs. Conversely, NDMM patients without CTCs showed unprecedented outcomes, with 5-year PFS and OS rates of 83% and 97%, respectively. A cutoff of 0.02% CTCs was independent of the ISS, LDH, and cytogenetics in a multivariate analysis of risk factors for PFS. The 0.02% CTC cutoff synergized with the MGUS-like phenotype and the R-ISS for improving the risk stratification systems. MRD negativity was less frequent if CTCs were ≥0.02% at diagnosis, but whenever achieved, the poor prognosis of these patients was abrogated. This study shows the clinical utility of CTC assessment in MM and provides evidence toward a consensus cutoff for risk stratification.

2.
Cell Mol Life Sci ; 80(4): 100, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36933062

RESUMO

Deep sequencing of human tumours has uncovered a previously unappreciated role for epigenetic regulators in tumorigenesis. H3K4 methyltransferase KMT2C/MLL3 is mutated in several solid malignancies, including more than 10% of breast tumours. To study the tumour suppressor role of KMT2C in breast cancer, we generated mouse models of Erbb2/Neu, Myc or PIK3CA-driven tumorigenesis, in which the Kmt2c locus is knocked out specifically in the luminal lineage of mouse mammary glands using the Cre recombinase. Kmt2c knock out mice develop tumours earlier, irrespective of the oncogene, assigning a bona fide tumour suppressor role for KMT2C in mammary tumorigenesis. Loss of Kmt2c induces extensive epigenetic and transcriptional changes, which lead to increased ERK1/2 activity, extracellular matrix re-organization, epithelial-to-mesenchymal transition and mitochondrial dysfunction, the latter associated with increased reactive oxygen species production. Loss of Kmt2c renders the Erbb2/Neu-driven tumours more responsive to lapatinib. Publicly available clinical datasets revealed an association of low Kmt2c gene expression and better long-term outcome. Collectively, our findings solidify the role of KMT2C as a tumour suppressor in breast cancer and identify dependencies that could be therapeutically amenable.


Assuntos
Neoplasias da Mama , Proteínas de Ligação a DNA , Lapatinib , Mitocôndrias , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Genes Supressores de Tumor , Lapatinib/farmacologia , Camundongos Knockout , Mitocôndrias/patologia , Transição Epitelial-Mesenquimal
3.
Brain Behav Immun ; 87: 689-702, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32126289

RESUMO

Patients suffering from autoimmune diseases are more susceptible to mental disorders yet, the existence of specific cellular and molecular mechanisms behind the co-morbidity of these pathologies is far from being fully elucidated. By generating transgenic mice overexpressing Annexin-A1 exclusively in T cells to study its impact in models of autoimmune diseases, we made the unpredicted observation of an increased level of anxiety. Gene microarray of Annexin-A1 CD4+ T cells identified a novel anxiogenic factor, a small protein of approximately 21 kDa encoded by the gene 2610019F03Rik which we named Immuno-moodulin. Neutralizing antibodies against Immuno-moodulin reverted the behavioral phenotype of Annexin-A1 transgenic mice and lowered the basal levels of anxiety in wild type mice; moreover, we also found that patients suffering from obsessive compulsive disorders show high levels of Imood in their peripheral mononuclear cells. We thus identify this protein as a novel peripheral determinant that modulates anxiety behavior. Therapies targeting Immuno-moodulin may lead to a new type of treatment for mental disorders through regulation of the functions of the immune system, rather than directly acting on the nervous system.


Assuntos
Anexina A1 , Doenças Autoimunes , Animais , Humanos , Camundongos , Camundongos Transgênicos , Linfócitos T
4.
J Immunol ; 200(4): 1270-1282, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29330321

RESUMO

In the context of inflammation, osteopontin (Opn) is known to promote effector responses, facilitating a proinflammatory environment; however, its role during antigenic tolerance induction is unknown. Using a mouse model of asthma, we investigated the role of Opn during antigenic tolerance induction and its effects on associated regulatory cellular populations prior to disease initiation. Our experiments demonstrate that Opn drives protective antigenic tolerance by inducing accumulation of IFN-ß-producing plasmacytoid dendritic cells, as well as regulatory T cells, in mediastinal lymph nodes. We also show that, in the absence of TLR triggers, recombinant Opn, and particularly its SLAYGLR motif, directly induces IFN-ß expression in Ag-primed plasmacytoid dendritic cells, which renders them extra protective against induction of allergic airway disease upon transfer into recipient mice. Lastly, we show that blockade of type I IFNR prevents antigenic tolerance induction against experimental allergic asthma. Overall, we unveil a new role for Opn in setting up a tolerogenic milieu boosting antigenic tolerance induction, thus leading to prevention of allergic airway inflammation. Our results provide insight for the future design of immunotherapies against allergic asthma.


Assuntos
Tolerância Imunológica/imunologia , Osteopontina/imunologia , Hipersensibilidade Respiratória/imunologia , Animais , Células Dendríticas/imunologia , Interferon beta/imunologia , Camundongos , Camundongos Transgênicos , Linfócitos T Reguladores/imunologia
5.
J Immunol ; 196(12): 4947-56, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27183630

RESUMO

The development of therapies for multiple sclerosis targeting pathogenic T cell responses remains imperative. Previous studies have shown that estrogen receptor (ER) ß ligands could inhibit experimental autoimmune encephalomyelitis. However, the effects of ERß-specific ligands on human or murine pathogenic immune cells, such as Th17, were not investigated. In this article, we show that the synthetic ERß-specific ligand 4-(2-phenyl-5,7-bis[trifluoromethyl]pyrazolo[1,5-a]pyrimidin-3-yl)phenol (PHTPP) reversed established paralysis and CNS inflammation, characterized by a dramatic suppression of pathogenic Th responses as well as induction of IL-10-producing regulatory CD4(+) T cell subsets in vivo. Moreover, administration of PHTPP in symptomatic mice induced regulatory CD4(+) T cells that were suppressive in vivo. PHTPP-mediated experimental autoimmune encephalomyelitis amelioration was canceled in mice with ERß-deficient CD4(+) T cells only, indicating that expression of ERß by these cells is crucial for the observed therapeutic effect. Importantly, synthetic ERß-specific ligands acting directly on CD4(+) T cells suppressed human and mouse Th17 cells, downregulating Th17 cell signature gene expression and expanding IL-10-producing T cells among them. TGF-ß1 and aryl hydrocarbon receptor activation enhanced the ERß ligand-mediated expansion of IL-10-producing T cells among Th17 cells. In addition, these ERß-specific ligands promoted the induction and maintenance of Foxp3(+) T regulatory cells, as well as their in vitro suppressive function. Thus, ERß-specific ligands targeting pathogenic Th17 cells and inducing functional regulatory cells represent a promising subset of therapeutic agents for multiple sclerosis.


Assuntos
Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Receptor beta de Estrogênio/metabolismo , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Receptor beta de Estrogênio/deficiência , Receptor beta de Estrogênio/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Interleucina-10/biossíntese , Interleucina-10/imunologia , Ligantes , Camundongos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Paralisia/tratamento farmacológico , Pirazóis/administração & dosagem , Pirazóis/síntese química , Pirimidinas/administração & dosagem , Pirimidinas/síntese química , Receptores de Hidrocarboneto Arílico/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Fator de Crescimento Transformador beta1/imunologia
6.
J Immunol ; 196(9): 3570-80, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016609

RESUMO

T cell Ig and ITIM domain receptor (TIGIT), expressed on T, NK, and regulatory T cells, is known as an inhibitory molecule that limits autoimmunity, antiviral and antitumor immunity. In this report, we demonstrate that TIGIT enhances Th2 immunity. TIGIT expression was upregulated in activated Th2 cells from mice with experimental allergic disease and in Th2 polarization cultures. In addition, its high-affinity ligand CD155 was upregulated in mediastinal lymph node dendritic cells from allergic mice. In an in vitro setting, we observed that Tigit expression in Th2 cells and its interaction with CD155 expressed in dendritic cells were important during the development of Th2 responses. In addition, blockade of TIGIT inhibited Th2, but had no effect on either Th1 or Th17 polarization. In vivo blockade of TIGIT suppressed hallmarks of allergic airway disease, such as lung eosinophilia, goblet cell hyperplasia, Ag-specific Th2 responses, and IgE production, and reduced numbers of T follicular helper and effector Th2 cells. Thus, TIGIT is critical for Th2 immunity and can be used as a therapeutic target, especially in light of recent findings showing TIGIT locus hypomethylation in T cells from pediatric patients with allergic asthma.


Assuntos
Hipersensibilidade/imunologia , Memória Imunológica , Receptores Imunológicos/metabolismo , Células Th2/imunologia , Animais , Citocinas/imunologia , Células Dendríticas/imunologia , Feminino , Células Caliciformes/imunologia , Hiperplasia/imunologia , Imunoglobulina E/biossíntese , Imunoglobulina E/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Eosinofilia Pulmonar/imunologia , Receptores Imunológicos/genética , Receptores Virais/genética , Células Th17/imunologia , Células Th2/fisiologia
7.
J Immunol ; 197(7): 2598-609, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27549171

RESUMO

Multiple sclerosis (MS), an autoimmune disease of the CNS, is mediated by autoreactive Th cells. A previous study showed that the neurosteroid dehydroepiandrosterone (DHEA), when administered preclinically, could suppress progression of relapsing-remitting experimental autoimmune encephalomyelitis (EAE). However, the effects of DHEA on human or murine pathogenic immune cells, such as Th17, were unknown. In addition, effects of this neurosteroid on symptomatic disease, as well as the receptors involved, had not been investigated. In this study, we show that DHEA suppressed peripheral responses from patients with MS and reversed established paralysis and CNS inflammation in four different EAE models, including the 2D2 TCR-transgenic mouse model. DHEA directly inhibited human and murine Th17 cells, inducing IL-10-producing regulatory T cells. Administration of DHEA in symptomatic mice induced regulatory CD4(+) T cells that were suppressive in an IL-10-dependent manner. Expression of the estrogen receptor ß by CD4(+) T cells was necessary for DHEA-mediated EAE amelioration, as well as for direct downregulation of Th17 responses. TGF-ß1 as well as aryl hydrocarbon receptor activation was necessary for the expansion of IL-10-producing T cells by DHEA. Thus, our studies demonstrate that compounds that inhibit pathogenic Th17 responses and expand functional regulatory cells could serve as therapeutic agents for autoimmune diseases, such as MS.


Assuntos
Autoimunidade/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Desidroepiandrosterona/farmacologia , Receptor beta de Estrogênio/metabolismo , Esclerose Múltipla/tratamento farmacológico , Neurotransmissores/farmacologia , Células Th17/efeitos dos fármacos , Animais , Autoimunidade/imunologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Sistema Nervoso Central/imunologia , Desidroepiandrosterona/administração & dosagem , Receptor beta de Estrogênio/deficiência , Receptor beta de Estrogênio/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Neurotransmissores/administração & dosagem , Células Th17/imunologia , Células Th17/patologia
8.
J Biol Chem ; 291(16): 8756-72, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26907683

RESUMO

α-Synuclein, a presynaptic neuronal protein encoded by the SNCA gene, is strongly implicated in Parkinson disease (PD). PD pathogenesis is linked to increased SNCA levels; however, the transcriptional elements that control SNCA expression are still elusive. Previous experiments in PC12 cells demonstrated that the transcription factor zinc finger and SCAN domain containing 21 (ZSCAN21) plays an important regulatory role in SNCA transcription. Currently, we characterized the role of ZSCAN21 in SNCA transcription in primary neuronal cultures and in vivo We found that ZSCAN21 is developmentally expressed in neurons in different rat brain regions. We confirmed its binding in the intron 1 region of SNCA in rat cortical cultures. Lentivirus-mediated silencing of ZSCAN21 increased significantly SNCA promoter activity, mRNA, and protein levels in such cultures. In contrast, ZSCAN21 silencing reduced SNCA in neurosphere cultures. Interestingly, ZSCAN21 overexpression in cortical neurons led to robust mRNA but negligible protein expression, suggesting that ZSCAN21 protein levels are tightly regulated post-transcriptionally and/or post-translationally in primary neurons. Efficient adeno-associated virus-mediated knockdown of ZSCAN21 in the postnatal and adult hippocampus, an area linked with non-motor PD symptoms, revealed no significant alterations in SNCA levels. Overall, our study demonstrates that ZSCAN21 is involved in the transcriptional regulation of SNCA in primary neuronal cultures, but the direction of the effect is variable, likely depending on neuronal maturation. However, the unaltered SNCA levels observed following ZSCAN21 down-regulation in the rat brain, possibly due to compensatory mechanisms, imply that ZSCAN21 is not a master regulator of SNCA in vivo.


Assuntos
Córtex Cerebral/metabolismo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Transativadores/metabolismo , alfa-Sinucleína/biossíntese , Animais , Células Cultivadas , Córtex Cerebral/citologia , Hipocampo/citologia , Neurônios/citologia , Ratos , Ratos Wistar
9.
Proc Natl Acad Sci U S A ; 111(9): E856-65, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550510

RESUMO

Intestinal CD103(-) dendritic cells (DCs) are pathogenic for colitis. Unveiling molecular mechanisms that render these cells proinflammatory is important for the design of specific immunotherapies. In this report, we demonstrated that mesenteric lymph node CD103(-) DCs express, among other proinflammatory cytokines, high levels of osteopontin (Opn) during experimental colitis. Opn expression by CD103(-) DCs was crucial for their immune profile and pathogenicity, including induction of T helper (Th) 1 and Th17 cell responses. Adoptive transfer of Opn-deficient CD103(-) DCs resulted in attenuated colitis in comparison to transfer of WT CD103(-) DCs, whereas transgenic CD103(-) DCs that overexpress Opn were highly pathogenic in vivo. Neutralization of secreted Opn expressed exclusively by CD103(-) DCs restrained disease severity. Also, Opn deficiency resulted in milder disease, whereas systemic neutralization of secreted Opn was therapeutic. We determined a specific domain of the Opn protein responsible for its CD103(-) DC-mediated proinflammatory effect. We demonstrated that disrupting the interaction of this Opn domain with integrin α9, overexpressed on colitic CD103(-) DCs, suppressed the inflammatory potential of these cells in vitro and in vivo. These results add unique insight into the biology of CD103(-) DCs and their function during inflammatory bowel disease.


Assuntos
Colite/imunologia , Células Dendríticas/metabolismo , Osteopontina/metabolismo , Transferência Adotiva , Animais , Anticorpos Neutralizantes/imunologia , Antígenos CD , Colite/fisiopatologia , Primers do DNA/genética , Citometria de Fluxo , Cadeias alfa de Integrinas/deficiência , Integrinas/metabolismo , Linfonodos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteopontina/genética , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido Trinitrobenzenossulfônico
10.
J Immunol ; 190(6): 2641-9, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23408837

RESUMO

Genome-wide association studies of complex immune-mediated diseases have indicated that many genetic factors, each with individual low risk, contribute to overall disease. It is therefore timely and important to characterize how immune responses may be subtly modified by tissue context. In this article, we explore the role of tissue-derived molecules in influencing the function of T cells, which, owing to their migratory nature, come into contact with many different microenvironments through their lifespan. Hedgehog (Hh) proteins act as secreted morphogens, providing concentration-dependent positional and temporal cell-fate specification in solid tissues. Hh signaling is required for embryogenesis and is important in postnatal tissue renewal and in malignancy. However, the function of Hh in dynamic, fluid systems, such as in mammalian immunity, is largely unknown. In this article, we show that Hh-dependent transcription in T cells promoted Th2 transcriptional programs and differentiation, exacerbating allergic disease. Of interest, expression of Sonic Hh increased in lung epithelial cells following the induction of allergic disease, and lung T cells upregulated Hh target gene expression, indicating that T cells respond to locally secreted Hh ligands in vivo. We show that Il4, the key Th2 cytokine, is a novel transcriptional target of Hh signals in T cells, providing one mechanism for the role of Hh in Th differentiation. We propose that Hh, secreted from inflamed, remodeling, or malignant tissue, can modulate local T cell function. Our data present an unexpected and novel role for tissue-derived morphogens in the regulation of fluid immune responses, with implications for allergy and tumor responses, suggesting new uses for anti-Hh therapeutics.


Assuntos
Asma/imunologia , Asma/metabolismo , Diferenciação Celular/imunologia , Proteínas Hedgehog/fisiologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Asma/patologia , Células Cultivadas , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Linfócitos T Auxiliares-Indutores/patologia , Distribuição Tecidual/imunologia , Transcrição Gênica/imunologia
11.
Methods Cell Biol ; 186: 151-187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705598

RESUMO

Several metabolic pathways are essential for the physiological regulation of immune cells, but their dysregulation can cause immune dysfunction. Hypermetabolic and hypometabolic states represent deviations in the magnitude and flexibility of effector cells in different contexts, for example in autoimmunity, infections or cancer. To study immunometabolism, most methods focus on bulk populations and rely on in vitro activation assays. Nowadays, thanks to the development of single-cell technologies, including multiparameter flow cytometry, mass cytometry, RNA cytometry, among others, the metabolic state of individual immune cells can be measured in a variety of samples obtained in basic, translational and clinical studies. Here, we provide an overview of different single-cell approaches that are employed to investigate both mitochondrial functions and cell dependence from mitochondria metabolism. Moreover, besides the description of the appropriate experimental settings, we discuss the strengths and weaknesses of different approaches with the aim to suggest how to study cell metabolism in the settings of interest.


Assuntos
Mitocôndrias , Análise de Célula Única , Animais , Humanos , Citometria de Fluxo/métodos , Mitocôndrias/metabolismo , Fenótipo , Análise de Célula Única/métodos
12.
Nat Commun ; 15(1): 2752, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553477

RESUMO

Disease-modifying therapies (DMT) administered to patients with multiple sclerosis (MS) can influence immune responses to SARS-CoV-2 and vaccine efficacy. However, data on the detailed phenotypic, functional and metabolic characteristics of antigen (Ag)-specific cells following the third dose of mRNA vaccine remain scarce. Here, using flow cytometry and 45-parameter mass cytometry, we broadly investigate the phenotype, function and the single-cell metabolic profile of SARS-CoV-2-specific T and B cells up to 8 months after the third dose of mRNA vaccine in a cohort of 94 patients with MS treated with different DMT, including cladribine, dimethyl fumarate, fingolimod, interferon, natalizumab, teriflunomide, rituximab or ocrelizumab. Almost all patients display functional immune response to SARS-CoV-2. Different metabolic profiles characterize antigen-specific-T and -B cell response in fingolimod- and natalizumab-treated patients, whose immune response differs from all the other MS treatments.


Assuntos
COVID-19 , Imunossenescência , Esclerose Múltipla , Humanos , Imunossupressores/uso terapêutico , Cloridrato de Fingolimode/uso terapêutico , SARS-CoV-2 , Natalizumab/uso terapêutico , Eficácia de Vacinas , Vacinas de mRNA , COVID-19/prevenção & controle
13.
Front Immunol ; 15: 1388998, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863705

RESUMO

Background: Neuronal nicotinic acetylcholine receptors (nAChRs) are abundant in the central nervous system (CNS), playing critical roles in brain function. Antigenicity of nAChRs has been well demonstrated with antibodies to ganglionic AChR subtypes (i.e., subunit α3 of α3ß4-nAChR) and muscle AChR autoantibodies, thus making nAChRs candidate autoantigens in autoimmune CNS disorders. Antibodies to several membrane receptors, like NMDAR, have been identified in autoimmune encephalitis syndromes (AES), but many AES patients have yet to be unidentified for autoantibodies. This study aimed to develop of a cell-based assay (CBA) that selectively detects potentially pathogenic antibodies to subunits of the major nAChR subtypes (α4ß2- and α7-nAChRs) and its use for the identification of such antibodies in "orphan" AES cases. Methods: The study involved screening of sera derived from 1752 patients from Greece, Turkey and Italy, who requested testing for AES-associated antibodies, and from 1203 "control" patients with other neuropsychiatric diseases, from the same countries or from Germany. A sensitive live-CBA with α4ß2-or α7-nAChR-transfected cells was developed to detect antibodies against extracellular domains of nAChR major subunits. Flow cytometry (FACS) was performed to confirm the CBA findings and indirect immunohistochemistry (IHC) to investigate serum autoantibodies' binding to rat brain tissue. Results: Three patients were found to be positive for serum antibodies against nAChR α4 subunit by CBA and the presence of the specific antibodies was quantitatively confirmed by FACS. We detected specific binding of patient-derived serum anti-nAChR α4 subunit antibodies to rat cerebellum and hippocampus tissue. No serum antibodies bound to the α7-nAChR-transfected or control-transfected cells, and no control serum antibodies bound to the transfected cells. All patients positive for serum anti-nAChRs α4 subunit antibodies were negative for other AES-associated antibodies. All three of the anti-nAChR α4 subunit serum antibody-positive patients fall into the AES spectrum, with one having Rasmussen encephalitis, another autoimmune meningoencephalomyelitis and another being diagnosed with possible autoimmune encephalitis. Conclusion: This study lends credence to the hypothesis that the major nAChR subunits are autoimmune targets in some cases of AES and establishes a sensitive live-CBA for the identification of such patients.


Assuntos
Autoanticorpos , Receptores Nicotínicos , Humanos , Autoanticorpos/imunologia , Autoanticorpos/sangue , Receptores Nicotínicos/imunologia , Animais , Masculino , Feminino , Ratos , Adulto , Pessoa de Meia-Idade , Doenças do Sistema Nervoso Central/imunologia , Idoso , Adulto Jovem , Encefalite/imunologia , Adolescente , Neurônios/imunologia , Neurônios/metabolismo
14.
Stem Cell Reports ; 18(9): 1827-1840, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37541259

RESUMO

Adherens junctions (AJs) provide adhesive properties through cadherins and associated cytoplasmic catenins and participate in morphogenetic processes. We examined AJs formed between ISL1+ cardiovascular progenitor cells during differentiation of embryonic stem cells (ESCs) in vitro and in mouse embryogenesis in vivo. We found that, in addition to N-CADHERIN, a percentage of ISL1+ cells transiently formed vascular endothelial (VE)-CADHERIN-mediated AJs during in vitro differentiation on days 4 and 5, and the same pattern was observed in vivo. Fluorescence-activated cell sorting (FACS) analysis extended morphological data showing that VE-CADHERIN+/ISL1+ cells constitute a significant percentage of cardiac progenitors on days 4 and 5. The VE-CADHERIN+/ISL1+ cell population represented one-third of the emerging FLK1+/PDGFRa+ cardiac progenitor cells (CPCs) for a restricted time window (days 4-6). Ablation of VE-CADHERIN during ESC differentiation results in severe inhibition of cardiac differentiation. Disruption of all classic cadherins in the VE-CADHERIN+ population via a cadherin dominant-negative mutant's expression resulted in a dramatic decrease in the ISL1+ population and inhibition of cardiac differentiation.


Assuntos
Antígenos CD , Caderinas , Coração , Animais , Camundongos , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Coração/embriologia
15.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065138

RESUMO

When incorporated into a top-hat electrostatic analyzer, a gate electrode enables the separation of ions by their mass-per-charge with modest mass resolution (M/∆M ∼ 10). Gated-time-of-flight (TOF) instruments avoid the energy straggling and angular scattering effects prevalent in foil-based detection systems, providing more pristine measurements of three-dimensional distribution functions of incident ions. Gated-TOF implementations are ideal for measuring the properties of low-energy (i.e., <100 eV) thermal ions in various space environments. We present an instrument prototype capable of separating H+, He+, O+, and O2+ in Earth's ionosphere and demonstrate that in addition to providing species determination, precise operation of the gate electrode provides an electronically adjustable geometric factor that can extend a single instrument's dynamic range by several orders of magnitude.

16.
Front Immunol ; 14: 1071623, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761741

RESUMO

Current understanding of Multiple Sclerosis (MS) pathophysiology implicates perturbations in adaptive cellular immune responses, predominantly T cells, in Relapsing-Remitting forms (RRMS). Nevertheless, from a clinical perspective MS is a heterogeneous disease reflecting the heterogeneity of involved biological systems. This complexity requires advanced analysis tools at the single-cell level to discover biomarkers for better patient-group stratification. We designed a novel 44-parameter mass cytometry panel to interrogate predominantly the role of effector and regulatory subpopulations of peripheral blood myeloid subsets along with B and T-cells (excluding granulocytes) in MS, assessing three different patient cohorts: RRMS, PPMS (Primary Progressive) and Tumefactive MS patients (TMS) (n=10, 8, 14 respectively). We further subgrouped our cohort into inactive or active disease stages to capture the early underlying events in disease pathophysiology. Peripheral blood analysis showed that TMS cases belonged to the spectrum of RRMS, whereas PPMS cases displayed different features. In particular, TMS patients during a relapse stage were characterized by a specific subset of CD11c+CD14+ CD33+, CD192+, CD172+-myeloid cells with an alternative phenotype of monocyte-derived macrophages (high arginase-1, CD38, HLA-DR-low and endogenous TNF-a production). Moreover, TMS patients in relapse displayed a selective CD4 T-cell lymphopenia of cells with a Th2-like polarised phenotype. PPMS patients did not display substantial differences from healthy controls, apart from a trend toward higher expansion of NK cell subsets. Importantly, we found that myeloid cell populations are reshaped under effective disease-modifying therapy predominantly with glatiramer acetate and to a lesser extent with anti-CD20, suggesting that the identified cell signature represents a specific therapeutic target in TMS. The expanded myeloid signature in TMS patients was also confirmed by flow cytometry. Serum neurofilament light-chain levels confirmed the correlation of this myeloid cell signature with indices of axonal injury. More in-depth analysis of myeloid subsets revealed an increase of a subset of highly cytolytic and terminally differentiated NK cells in PPMS patients with leptomeningeal enhancement (active-PPMS), compared to those without (inactive-PPMS). We have identified previously uncharacterized subsets of circulating myeloid cells and shown them to correlate with distinct disease forms of MS as well as with specific disease states (relapse/remission).


Assuntos
Esclerose Múltipla , Humanos , Biomarcadores , Esclerose Múltipla/diagnóstico , Fenótipo
17.
J Cell Biol ; 221(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35878016

RESUMO

Type I interferon (IFN) production by plasmacytoid dendritic cells (pDCs) has been mainly studied in the context of Toll-like receptor (TLR) activation. In the current report, we reveal that, in the absence of TLR activation, the integrin-binding SLAYGLR motif of secreted osteopontin (sOpn) induces IFN-ß production in murine pDCs. This process is mediated by α4ß1 integrin, indicating that integrin triggering may act as a subtle danger signal leading to IFN-ß induction. The SLAYGLR-mediated α4 integrin/IFN-ß axis is MyD88 independent and operates via a PI3K/mTOR/IRF3 pathway. Consequently, SLAYGLR-treated pDCs produce increased levels of type I IFNs following TLR stimulation. Intratumoral administration of SLAYGLR induces accumulation of IFN-ß-expressing pDCs and efficiently suppresses melanoma tumor growth. In this process, pDCs are crucial. Finally, SLAYGLR enhances pDC development from bone marrow progenitors. These findings open new questions on the roles of sOpn and integrin α4 during homeostasis and inflammation. The newly identified integrin/IFN-ß axis may be implicated in a wide array of immune responses.


Assuntos
Células Dendríticas , Integrina alfa4beta1 , Interferon beta , Motivos de Aminoácidos , Animais , Células Dendríticas/metabolismo , Integrina alfa4beta1/metabolismo , Interferon beta/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Osteopontina/metabolismo , Receptores Toll-Like/metabolismo
18.
Mediterr J Rheumatol ; 33(1): 102-105, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35611098

RESUMO

Background/Aim: Giant cell arteritis (GCA) represents the most prevalent form of systemic vasculitis in the elderly, primarily affecting the temporal artery, the extracranial branches of carotid arteries, and the aorta. GCA is a highly heterogeneous disease in terms of clinical and histological findings, pathophysiology, and treatment selection strategies. The disease is highly responsive to glucocorticosteroids (GCs), but almost half of patients may relapse following GCs tapering. The main hypothesis of GCA pathogenesis includes altered immune responses and changes in the vascular microenvironment, leading to a dynamic interplay between innate and adaptive immunity. The aim of this study is to explore the effect of GCs on the phenotype of peripheral mononuclear cell subpopulations and on the major inflammatory molecules detected in the peripheral blood of patients during the acute phase of the disease. Methods: Patient PBMCs will be studied using Cytometry by time of flight (CyTOF). Following the CyTOF analysis, Luminex Assay will be performed on the same patient samples to identify the kinetics of the most prominent inflammatory mediators correlating with the subpopulations detected. Patient population consists of 8 patients with GCA, 6 with polymyalgia rheumatica, as disease control group and 5 healthy controls (sex and age matched) at 3 time points: disease diagnosis, 48 and 96 hours after treatment administration. Conclusion: The identification of potential alterations in cell subpopulations and the kinetics of inflammatory mediators are expected to lead to the production of new knowledge regarding the role of corticosteroids in the phase of acute inflammatory response.

19.
Front Cell Dev Biol ; 10: 951082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531940

RESUMO

Integrins are the major family of transmembrane proteins that mediate cell-matrix adhesion and have a critical role in epithelial morphogenesis. Integrin function largely depends on the indirect connection of the integrin cytoplasmic tail to the actin cytoskeleton through an intracellular protein network, the integrin adhesome. What is currently unknown is the role of individual integrin adhesome components in epithelia dynamic reorganization. Drosophila egg chamber consists of the oocyte encircled by a monolayer of somatic follicle epithelial cells that undergo specific cell shape changes. Egg chamber morphogenesis depends on a developmental array of cell-cell and cell-matrix signalling events. Recent elegant work on the role of integrins in the Drosophila egg chamber has indicated their essential role in the early stages of oogenesis when the pre-follicle cells assemble into the follicle epithelium. Here, we have focused on the functional requirement of two key integrin adhesome components, Parvin and Integrin-Linked Kinase (ILK). Both proteins are expressed in the developing ovary from pupae to the adult stage and display enriched expression in terminal filament and stalk cells, while their genetic removal from early germaria results in severe disruption of the subsequent oogenesis, leading to female sterility. Combining genetic mosaic analysis of available null alleles for both Parvin and Ilk with conditional rescue utilizing the UAS/Gal4 system, we found that Parvin and ILK are required in pre-follicle cells for germline cyst encapsulation and stalk cell morphogenesis. Collectively, we have uncovered novel developmental functions for both Parvin and ILK, which closely synergize with integrins in epithelia.

20.
J Fungi (Basel) ; 8(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35448559

RESUMO

Recent studies have revealed the crucial role of several edible mushrooms and fungal compounds, mainly polysaccharides, in human health and disease. The investigation of the immunomodulating effects of mushroom polysaccharides, especially ß-glucans, and the link between their anticancer and immunomodulatory properties with their possible prebiotic activity on gut micro-organisms has been the subject of intense research over the last decade. We investigated the immunomodulating effects of Pleurotus eryngii mushrooms, selected due to their high ß-glucan content, strong lactogenic effect, and potent geno-protective properties, following in vitro fermentation by fecal inocula from healthy elderly volunteers (>60 years old). The immunomodulating properties of the fermentation supernatants (FSs) were initially investigated in U937-derived human macrophages. Gene expression as well as pro- (TNF-α, IL-1ß) and anti-inflammatory cytokines (IL-10, IL-1Rα) were assessed and correlated with the fermentation process. The presence of P. eryngii in the fermentation process led to modifications in immune response, as indicated by the altered gene expression and levels of the cytokines examined, a finding consistent for all volunteers. The FSs immunomodulating effect on the volunteers' peripheral blood mononuclear cells (PBMCs) was verified through the use of cytometry by time of flight (CyTOF) analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA