RESUMO
Immature stage VI Xenopus oocytes are arrested at the G(2)/M border of meiosis I until exposed to progesterone, which induces meiotic resumption through a non-genomic mechanism. One of the earliest events produced by this hormone is inhibition of the plasma membrane enzyme adenylyl cyclase (AC), with the concomitant drop in intracellular cAMP levels and reinitiation of the cell cycle. Recently Gsalpha and Gbetagamma have been shown to play an important role as positive regulators of Xenopus oocyte AC, maintaining the oocyte in the arrested state. However, a question that still remains unanswered, is how the activated state of Gsalpha and Gbetagamma is achieved in the immature oocyte, since no receptor or ligand have been found to be required. Here we provide evidence that xRic-8 can act in vitro and in vivo as a GEF for Gsalpha. Overexpression of xRic-8, through mRNA injection, greatly inhibits progesterone induced oocyte maturation and endogenous xRic-8 mRNA depletion, through siRNA microinjection, induces spontaneous oocyte maturation. These results suggest that xRic-8 is participating in the immature oocyte by keeping Gsalpha-Gbetagamma-AC signaling complex in an activated state and therefore maintaining G2 arrest.
Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Meiose , Oócitos/citologia , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/genéticaRESUMO
During the last decade, considerable evidence is accumulating that supports the view that the classic progesterone receptor (xPR-1) is mediating Xenopus laevis oocyte maturation through a non-genomic mechanism. Overexpression and depletion of oocyte xPR-1 have been shown to accelerate and to block progesterone-induced oocyte maturation, respectively. In addition, rapid inhibition of plasma membrane adenylyl cyclase (AC) by the steroid hormone, supports the idea that xPR-1 should be localized at the oocyte plasma membrane. To test this hypothesis, we transiently transfected xPR-1 cDNA into Cos-7 cells and analyzed its subcellular distribution. Through Western blot and immunofluorescence analysis, we were able to detect xPR-1 associated to the plasma membrane of transfected Cos-7 cells. Additionally, using Progesterone-BSA-FITC, we identified specific progesterone-binding sites at the cell surface of xPR-1 expressing cells. Finally, we found that the receptor ligand-binding domain displayed membrane localization, in contrast to the N-terminal domain, which expressed in similar levels, remained cytosolic. Overall, these results indicate that a fraction of xPR-1 expressed in Cos-7 cells, associates to the plasma membrane through its LBD.
Assuntos
Membrana Celular/metabolismo , Receptores de Progesterona/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Sítios de Ligação , Western Blotting , Células COS , Chlorocebus aethiops , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Corantes Fluorescentes/metabolismo , Ligantes , Microscopia de Fluorescência , Progesterona/análogos & derivados , Progesterona/metabolismo , Estrutura Terciária de Proteína , Receptores de Progesterona/química , Receptores de Progesterona/genética , Soroalbumina Bovina/metabolismo , Transfecção , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevisRESUMO
Xenopus laevis oocyte maturation is induced by the steroid hormone progesterone through a non-genomic mechanism initiated at the cell membrane. Recently, two Xenopus oocyte progesterone receptors have been cloned; one is the classical progesterone receptor (xPR-1) involved in genomic actions and the other a putative seven-transmembrane-G-protein-couple receptor. Both receptors are postulated to be mediating the steroid-induced maturation process in the frog oocyte. In this study, we tested the hypothesis that the classical progesterone receptor, associated to the oocyte plasma membrane, is participating in the reinitiation of the cell cycle. Addition of a myristoilation and palmytoilation signal at the amino terminus of xPR-1 (mp xPR-1), increased the amount of receptor associated to the oocyte plasma membrane and most importantly, significantly potentiated progesterone-induced oocyte maturation sensitivity. These findings suggest that the classical xPR-1, located at the plasma membrane, is mediating through a non-genomic mechanism, the reinitiation of the meiotic cell cycle in the X. laevis oocyte.