Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(8): 4867-4878, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38563162

RESUMO

Aberrant activation of the cyclic GMP-AMP synthase (cGAS)/Stimulator of Interferon Genes (STING) pathway has been implicated in the development and progression of a myriad of inflammatory diseases including colitis, nonalcoholic steatohepatitis, amyotrophic lateral sclerosis (ALS), and age-related macular degeneration. Thus, STING pathway inhibitors could have therapeutic application in many of these inflammatory conditions. The cGAS inhibitor RU.521 and the STING inhibitor H-151 have shown promise as therapeutics in mouse models of colitis, ALS, and more. However, these agents require frequent high-dose intraperitoneal injections, which may limit translatability. Furthermore, long-term use of systemically administered cGAS/STING inhibitors may leave patients vulnerable to viral infections and cancer. Thus, localized or targeted inhibition of the cGAS/STING pathway may be an attractive, broadly applicable treatment for a variety of STING pathway-driven ailments. Here we describe STING-Pathway Inhibiting Nanoparticles (SPINS)-poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with RU.521 and H-151-as a platform for enhanced and sustained inhibition of cGAS/STING signaling. We demonstrate that SPINs are equally or more effective at inhibiting type-I interferon responses induced by cytosolic DNA than free H-151 or RU.521. Additionally, we describe a SPIN formulation in which PLGA is coemulsified with poly(benzoyloxypropyl methacrylamide) (P(HPMA-Bz)), which significantly improves drug loading and allows for tunable release of H-151 over a period of days to over a week by varying P(HPMA-Bz) content. Finally, we find that all SPIN formulations were as potent or more potent in inhibiting cGAS/STING signaling in primary murine macrophages, resulting in decreased expression of inflammatory M1-like macrophage markers. Therefore, our study provides an in vitro proof-of-concept for nanoparticle delivery of STING pathway inhibitors and positions SPINs as a potential platform for slowing or reversing the onset or progression of cGAS/STING-driven inflammatory conditions.


Assuntos
Proteínas de Membrana , Nanopartículas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Nanopartículas/química , Animais , Camundongos , Inflamação/tratamento farmacológico , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Tamanho da Partícula , Teste de Materiais , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
2.
Adv Healthc Mater ; : e2303815, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648653

RESUMO

RNA ligands of retinoic acid-inducible gene I (RIG-I) are a promising class of oligonucleotide therapeutics with broad potential as antiviral agents, vaccine adjuvants, and cancer immunotherapies. However, their translation has been limited by major drug delivery barriers, including poor cellular uptake, nuclease degradation, and an inability to access the cytosol where RIG-I is localized. Here this challenge is addressed by engineering nanoparticles that harness covalent conjugation of 5'-triphospate RNA (3pRNA) to endosome-destabilizing polymers. Compared to 3pRNA loaded into analogous nanoparticles via electrostatic interactions, it is found that covalent conjugation of 3pRNA improves loading efficiency, enhances immunostimulatory activity, protects against nuclease degradation, and improves serum stability. Additionally, it is found that 3pRNA could be conjugated via either a disulfide or thioether linkage, but that the latter is only permissible if conjugated distal to the 5'-triphosphate group. Finally, administration of 3pRNA-polymer conjugates to mice significantly increases type-I interferon levels relative to analogous carriers that use electrostatic 3pRNA loading. Collectively, these studies have yielded a next-generation polymeric carrier for in vivo delivery of 3pRNA, while also elucidating new chemical design principles for covalent conjugation of 3pRNA with potential to inform the further development of therapeutics and delivery technologies for pharmacological activation of RIG-I.

3.
ACS Nano ; 18(18): 11631-11643, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652829

RESUMO

Pharmacological activation of the retinoic acid-inducible gene I (RIG-I) pathway holds promise for increasing tumor immunogenicity and improving the response to immune checkpoint inhibitors (ICIs). However, the potency and clinical efficacy of 5'-triphosphate RNA (3pRNA) agonists of RIG-I are hindered by multiple pharmacological barriers, including poor pharmacokinetics, nuclease degradation, and inefficient delivery to the cytosol where RIG-I is localized. Here, we address these challenges through the design and evaluation of ionizable lipid nanoparticles (LNPs) for the delivery of 3p-modified stem-loop RNAs (SLRs). Packaging of SLRs into LNPs (SLR-LNPs) yielded surface charge-neutral nanoparticles with a size of ∼100 nm that activated RIG-I signaling in vitro and in vivo. SLR-LNPs were safely administered to mice via both intratumoral and intravenous routes, resulting in RIG-I activation in the tumor microenvironment (TME) and the inhibition of tumor growth in mouse models of poorly immunogenic melanoma and breast cancer. Significantly, we found that systemic administration of SLR-LNPs reprogrammed the breast TME to enhance the infiltration of CD8+ and CD4+ T cells with antitumor function, resulting in enhanced response to αPD-1 ICI in an orthotopic EO771 model of triple-negative breast cancer. Therapeutic efficacy was further demonstrated in a metastatic B16.F10 melanoma model, with systemically administered SLR-LNPs significantly reducing lung metastatic burden compared to combined αPD-1 + αCTLA-4 ICI. Collectively, these studies have established SLR-LNPs as a translationally promising immunotherapeutic nanomedicine for potent and selective activation of RIG-I with the potential to enhance response to ICIs and other immunotherapeutic modalities.


Assuntos
Imunoterapia , Nanopartículas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Lipídeos/química , Camundongos Endogâmicos C57BL , Nanopartículas/química , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA