Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Commun Signal ; 18(1): 77, 2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448393

RESUMO

BACKGROUND: Ability to adapt to temperature changes trough the Heat Shock Response (HSR) pathways is one of the most fundamental and clinically relevant cellular response systems. Heat Shock (HS) affects the signalling and gene expression responses of the Nuclear Factor κB (NF-κB) transcription factor, a critical regulator of proliferation and inflammation, however, our quantitative understanding of how cells sense and adapt to temperature changes is limited. METHODS: We used live-cell time-lapse microscopy and mathematical modelling to understand the signalling of the NF-κB system in the human MCF7 breast adenocarcinoma cells in response to pro-inflammatory Interleukin 1ß (IL1ß) and Tumour Necrosis Factor α (TNFα) cytokines, following exposure to a 37-43 °C range of physiological and clinical temperatures. RESULTS: We show that exposure to 43 °C 1 h HS inhibits the immediate NF-κB signalling response to TNFα and IL1ß stimulation although uptake of cytokines is not impaired. Within 4 h after HS treatment IL1ß-induced NF-κB responses return to normal levels, but the recovery of the TNFα-induced responses is still affected. Using siRNA knock-down of Heat Shock Factor 1 (HSF1) we show that this stimulus-specificity is conferred via the Inhibitory κB kinase (IKK) signalosome where HSF1-dependent feedback regulates TNFα, but not IL1ß-mediated IKK recovery post HS. Furthermore, we demonstrate that through the temperature-dependent denaturation and recovery of IKK, TNFα and IL1ß-mediated signalling exhibit different temperature sensitivity and adaptation to repeated HS when exposed to a 37-43 °C temperature range. Specifically, IL1ß-mediated NF-κB responses are more robust to temperature changes in comparison to those induced by TNFα treatment. CONCLUSIONS: We demonstrate that the kinetics of the NF-κB system following temperature stress is cytokine specific and exhibit differential adaptation to temperature changes. We propose that this differential temperature sensitivity is mediated via the IKK signalosome, which acts as a bona fide temperature sensor trough the HSR cross-talk. This novel quantitative understanding of NF-κB and HSR interactions is fundamentally important for the potential optimization of therapeutic hyperthermia protocols. Video Abstract.


Assuntos
Expressão Gênica/efeitos dos fármacos , Resposta ao Choque Térmico , Inflamação/metabolismo , Interleucina-1beta/farmacologia , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Humanos , Células MCF-7
2.
PLoS Comput Biol ; 14(4): e1006130, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29708974

RESUMO

Elevated temperature induces the heat shock (HS) response, which modulates cell proliferation, apoptosis, the immune and inflammatory responses. However, specific mechanisms linking the HS response pathways to major cellular signaling systems are not fully understood. Here we used integrated computational and experimental approaches to quantitatively analyze the crosstalk mechanisms between the HS-response and a master regulator of inflammation, cell proliferation, and apoptosis the Nuclear Factor κB (NF-κB) system. We found that populations of human osteosarcoma cells, exposed to a clinically relevant 43°C HS had an attenuated NF-κB p65 response to Tumor Necrosis Factor α (TNFα) treatment. The degree of inhibition of the NF-κB response depended on the HS exposure time. Mathematical modeling of single cells indicated that individual crosstalk mechanisms differentially encode HS-mediated NF-κB responses while being consistent with the observed population-level responses. In particular "all-or-nothing" encoding mechanisms were involved in the HS-dependent regulation of the IKK activity and IκBα phosphorylation, while others involving transport were "analogue". In order to discriminate between these mechanisms, we used live-cell imaging of nuclear translocations of the NF-κB p65 subunit. The single cell responses exhibited "all-or-nothing" encoding. While most cells did not respond to TNFα stimulation after a 60 min HS, 27% showed responses similar to those not receiving HS. We further demonstrated experimentally and theoretically that the predicted inhibition of IKK activity was consistent with the observed HS-dependent depletion of the IKKα and IKKß subunits in whole cell lysates. However, a combination of "all-or-nothing" crosstalk mechanisms was required to completely recapitulate the single cell data. We postulate therefore that the heterogeneity of the single cell responses might be explained by the cell-intrinsic variability of HS-modulated IKK signaling. In summary, we show that high temperature modulates NF-κB responses in single cells in a complex and unintuitive manner, which needs to be considered in hyperthermia-based treatment strategies.


Assuntos
Resposta ao Choque Térmico/fisiologia , Modelos Biológicos , NF-kappa B/metabolismo , Linhagem Celular , Biologia Computacional , Simulação por Computador , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Análise de Célula Única , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Nat Commun ; 14(1): 7237, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963878

RESUMO

Daily rhythms in mammalian behaviour and physiology are generated by a multi-oscillator circadian system entrained through environmental cues (e.g. light and feeding). The presence of tissue niche-dependent physiological time cues has been proposed, allowing tissues the ability of circadian phase adjustment based on local signals. However, to date, such stimuli have remained elusive. Here we show that daily patterns of mechanical loading and associated osmotic challenge within physiological ranges reset circadian clock phase and amplitude in cartilage and intervertebral disc tissues in vivo and in tissue explant cultures. Hyperosmolarity (but not hypo-osmolarity) resets clocks in young and ageing skeletal tissues and induce genome-wide expression of rhythmic genes in cells. Mechanistically, RNAseq and biochemical analysis revealed the PLD2-mTORC2-AKT-GSK3ß axis as a convergent pathway for both in vivo loading and hyperosmolarity-induced clock changes. These results reveal diurnal patterns of mechanical loading and consequent daily oscillations in osmolarity as a bona fide tissue niche-specific time cue to maintain skeletal circadian rhythms in sync.


Assuntos
Relógios Circadianos , Animais , Relógios Circadianos/fisiologia , Sinais (Psicologia) , Ritmo Circadiano/fisiologia , Mamíferos/fisiologia , Tempo
4.
Biochim Biophys Acta Mol Cell Res ; 1868(10): 119086, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34175335

RESUMO

The mouse 3110001I22Rik gene located in the first intron of Bfar is considered as a Bfar variant coding for the BFARv3 protein. However, it differs from other BFAR isoforms and resembles periphilin 1 (PPHLN1) due to its two (Lge1 and serine-rich) conserved domains. We identified the BFARv3/EGFP-interacting proteins by co-immunoprecipitation coupled to mass spectrometry, which revealed 40S ribosomal proteins (RPS3, RPS14, RPS19, RPS25, RPS27), histones (H1.2, H1.4, H3.3C), proteins involved in RNA processing and splicing (SFPQ, SNRPA1, HNRNPA3, NONO, KHDRBS3), calcium signaling (HPCAL1, PTK2B), as well as HSD17B4, GRB14, POSTN, and MYO10. Co-immunoprecipitation revealed that both Lge1 and Ser-rich domains of BFARv3 were necessary for binding to RNA-interacting factors NONO and SFPQ, known to be components of paraspeckles. Reciprocal co-immunoprecipitation and the proximity ligation assay confirmed that both BFARv3 and PPHLN1 could interact with NONO and SFPQ, suggesting a new function for PPHLN1 as well. BFARv3 and its Lge1 or Ser-rich-deficient mutants preferentially localize in the nucleus. We found an accumulation of BFARv3/EGFP (but not its mutated forms) in the nuclear granules, which was enhanced in response to arsenite treatment and ionizing radiation. Although Bfar v3 is expressed ubiquitously in mouse tissues, its expression is the highest in metaphase II oocytes. The BFARv3 interactome suggests its role in RNA metabolism, which is critical for the transcriptionally silent MII oocyte. Mouse BFARv3 has no ortholog in the human genome, thus it may contribute to the differences between these two species observed in oocyte maturation and early embryonic development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas de Membrana/genética , Oócitos/metabolismo , RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Feminino , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos
5.
Cell Death Differ ; 27(7): 2280-2292, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31996779

RESUMO

Heat shock can induce either cytoprotective mechanisms or cell death. We found that in certain human and mouse cells, including spermatocytes, activated heat shock factor 1 (HSF1) binds to sequences located in the intron(s) of the PMAIP1 (NOXA) gene and upregulates its expression which induces apoptosis. Such a mode of PMAIP1 activation is not dependent on p53. Therefore, HSF1 not only can activate the expression of genes encoding cytoprotective heat shock proteins, which prevents apoptosis, but it can also positively regulate the proapoptotic PMAIP1 gene, which facilitates cell death. This could be the primary cause of hyperthermia-induced elimination of heat-sensitive cells, yet other pro-death mechanisms might also be involved.


Assuntos
Apoptose , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais , Regulação para Cima/genética , Animais , Apoptose/genética , Caspases/metabolismo , Cromatina/metabolismo , Ativação Enzimática , Resposta ao Choque Térmico/genética , Íntrons/genética , Masculino , Camundongos Knockout , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA