Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(47): 18780-18790, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31660737

RESUMO

A family of asymmetric thiazolo[5,4-d]thiazole (TTz) fluorescent dye sensors has been developed, and their photophysical sensing properties are reported. The π-conjugated, TTz-bridged compounds are synthesized via a single-step, double condensation/oxidation of dithiooxamide and two different aromatic aldehydes: one with strong electron-donating characteristics and one with strong electron-accepting characteristics. The four reported dyes include electron-donating moieties (N,N-dibutylaniline and N,N-diphenylaniline) matched with three different electron-accepting moieties (pyridine, benzoic acid, and carboxaldehyde). The asymmetric TTz derivatives exhibit strong solvatofluorochromism with Stokes shifts between 0.269 and 0.750 eV (2270 and 6050 cm-1) and transition dipole moments (Δµ = 13-18 D) that are among the highest reported for push-pull dyes. Fluorescence quantum yields are as high as 0.93 in nonpolar solvents, and the fluorescence lifetimes (τF) vary from 1.50 to 3.01 ns depending on the solvent polarity. In addition, thermofluorochromic studies and spectrophotometric acid titrations were performed and indicate the possibility of using these dyes as temperature and/or acid sensors. In vitro cell studies indicate good cell membrane localization, negligible cytotoxicity, promising voltage sensitivities, and photostabilities that are 4 times higher than comparable dyes. Their ease of synthesis and purification, remarkable photophysical properties, and chemically sensitive TTz π-bridge make these asymmetric dye derivatives attractive for environmental and biological sensing or similar molecular optoelectronic applications.

3.
Anal Chim Acta ; 1027: 149-157, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29866264

RESUMO

Surface oxidation improves the dispersion of carbon nanotubes in aqueous solutions and plays a key role in the development of biosensors, electrochemical detectors and polymer composites. Accurate characterization of the carbon nanotube surface is important because the development of these nano-based applications depends on the degree of functionalization, in particular the amount of carboxylation. Affinity capillary electrophoresis is used to characterize the oxidation of multi-walled carbon nanotubes. A polytryptophan peptide that contains a single arginine residue (WRWWWW) serves as a receptor in affinity capillary electrophoresis to assess the degree of carboxylation. The formation of peptide-nanotube receptor-ligand complex was detected with a UV absorbance detector. Apparent dissociation constants (KD) are obtained by observing the migration shift of the WRWWWW peptide through background electrolyte at increasing concentrations of multi-walled carbon nanotubes. A 20% relative standard deviation in method reproducibility and repeatability is determined with triplicate analysis within a single sample preparation and across multiple sample preparations for a commercially available carbon nanotube. Affinity capillary electrophoresis is applied to assess differences in degree of carboxylation across two manufacturers and to analyze acid treated carbon nanotubes. The results of these studies are compared to X-ray photoelectron spectroscopy and zeta potential. Affinity capillary electrophoresis comparisons of carbon nanotube samples prepared by varying acid treatment time from 30 min to 3 h yielded significant differences in degree of carboxylation. X-ray photoelectron spectroscopy analysis was inconclusive due to potential acid contamination, while zeta potential showed no change based on surface charge. This work is significant to research involving carbon nanotube-based applications because it provides a new metric to rapidly characterize carbon nanotubes obtained from different vendors, or synthesized in laboratories using different procedures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA