Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; 44(2): 255-274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36658718

RESUMO

As the demand for tea (Camellia sinensis) has grown across the world, the amount of biomass waste that has been produced during the harvesting process has also increased. Tea consumption was estimated at about 6.3 million tonnes in 2020 and is anticipated to reach 7.4 million tonnes by 2025. The generation of tea waste (TW) after use has also increased concurrently with rising tea consumption. TW includes clipped stems, wasted tea leaves, and buds. Many TW-derived products have proven benefits in various applications, including energy generation, energy storage, wastewater treatment, and pharmaceuticals. TW is widely used in environmental and energy-related applications. Energy recovery from low- and medium-calorific value fuels may be accomplished in a highly efficient manner using pyrolysis, anaerobic digestion, and gasification. TW-made biochar and activated carbon are also promising adsorbents for use in environmental applications. Another area where TW shows promise is in the synthesis of phytochemicals. This review offers an overview of the conversion procedures for TW into value-added products. Further, the improvements in their applications for energy generation, energy storage, removal of different contaminants, and extraction of phytochemicals have been reviewed. A comprehensive assessment of the sustainable use of TWs as environmentally acceptable renewable resources is compiled in this review.


Assuntos
Chá , Resíduos
2.
Crit Rev Biotechnol ; : 1-19, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163946

RESUMO

Spent grains are one of the lignocellulosic biomasses available in abundance, discarded by breweries as waste. The brewing process generates around 25-30% of waste in different forms and spent grains alone account for 80-85% of that waste, resulting in a significant global waste volume. Despite containing essential nutrients, i.e., carbohydrates, fibers, proteins, fatty acids, lipids, minerals, and vitamins, efficient and economically viable valorization of these grains is lacking. Microbial fermentation enables the valorization of spent grain biomass into numerous commercially valuable products used in energy, food, healthcare, and biomaterials. However, the process still needs more investigation to overcome challenges, such as transportation, cost-effective pretreatment, and fermentation strategy. to lower the product cost and to achieve market feasibility and customer affordability. This review summarizes the potential of spent grains valorization via microbial fermentation and associated challenges.

3.
Br J Anaesth ; 132(4): 639-643, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290906

RESUMO

Type 2 diabetes mellitus is an increasingly common long-term condition, and suboptimal perioperative glycaemic control can lead to postoperative harms. The advent of new antidiabetic drugs, in particular glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors, has enabled perioperative continuation of these medicines, thus avoiding the harms of variable rate i.v. insulin infusions whilst providing glycaemic control. There are differences between medicines regulatory agencies and organisations on how these classes that are most often used to treat diabetes mellitus, (but also in the case of SGLT2 inhibitors chronic kidney disease and heart failure in those without diabetes) should be managed in the perioperative period. In this commentary, we argue that GLP-1 receptor agonists should continue during the perioperative period and that SGLT2 inhibitors should only be omitted the day prior to a planned procedure . The reasons for the differing advice advocated between regulatory agencies and what anaesthetic practitioners should do in the face of continuing uncertainty are discussed.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon , Hipoglicemiantes/uso terapêutico , Glucose , Sódio
4.
J Food Sci Technol ; 61(5): 847-860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38487279

RESUMO

Polyunsaturated fatty acids (PUFAs) found in microalgae, primarily omega-3 (ω-3) and omega-6 (ω-6) are essential nutrients with positive effects on diseases such as hyperlipidemia, atherosclerosis, and coronary risk. Researchers still seek improvement in PUFA yield at a large scale for better commercial prospects. This review summarizes advancements in microalgae PUFA research for their cost-effective production and potential applications. Moreover, it discusses the most promising cultivation modes using organic and inorganic sources. It also discusses biomass hydrolysates to increase PUFA production as an alternative and sustainable organic source. For cost-effective PUFA production, heterotrophic, mixotrophic, and photoheterotrophic cultivation modes are assessed with traditional photoautotrophic production modes. Also, mixotrophic cultivation has fascinating sustainable attributes over other trophic modes. Furthermore, it provides insight into growth phase (stage I) improvement strategies to accumulate biomass and the complementing effects of other stress-inducing strategies during the production phase (stage II) on PUFA enhancement under these cultivation modes. The role of an excessive or limiting range of salinity, nutrients, carbon source, and light intensity were the most effective parameter in stage II for accumulating higher PUFAs such as ω-3 and ω-6. This article outlines the commercial potential of microalgae for omega PUFA production. They reduce the risk of diabetes, cardiovascular diseases (CVDs), cancer, and hypertension and play an important role in their emerging role in healthy lifestyle management.

5.
J Food Sci Technol ; 61(4): 631-641, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38410271

RESUMO

Prolonged and excessive use of chlorpyrifos (CPS) has caused severe pollution, particularly in crops, vegetables, fruits, and water sources. As a result, CPS is detected in various food and water samples using conventional methods. However, its applications are limited due to size, portability, cost, etc. In this regard, electrochemical sensors are preferred for CPS detection due to their high sensitivity, reliability, rapid, on-site detection, and user-friendly. Notably, graphene-based electrochemical sensors have gained more attention due to their unique physiochemical and electrochemical properties. It shows high sensitivity, selectivity, and quick response because of its high surface area and high conductivity. In this review, we have discussed an overview of three graphene-based different functional electrochemical sensors such as electroanalytical sensors, bio-electrochemical sensors, and photoelectrochemical sensors used to detect CPS in food and water samples. Furthermore, the fabrication and operation of these electrochemical sensors using various materials (low band gap material, nanomaterials, enzymes, antibodies, DNA, aptamers, and so on) and electrochemical techniques (CV, DPV, EIS, SWV etc.) are discussed. The study found that the electrical signal was reduced with increasing CPS concentration. This is due to the blocking of active sites, reduced redox reaction, impedance, irreversible reactions, etc. In addition, acetylcholinesterase-coupled sensors are more sensitive and stable than others. Also, it can be further improved by fabricating with low band gap nanomaterials. Despite their advantages, these sensors have significant drawbacks, such as low reusability, repeatability, stability, and high cost. Therefore, further research is required to overcome such limitations.

6.
J Food Sci Technol ; 61(8): 1609-1619, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966797

RESUMO

The interest in algae-derived bioactive compounds has grown due to their potential therapeutic efficacy against a range of diseases. These compounds, derived from proteins, exhibit diverse functions and profound pharmacological effects. Recent research has highlighted the extensive health benefits of algae-derived bioactive compounds, positioning them as potential natural antioxidants in the food, pharmaceutical, and cosmetic industries. This study focuses on extracting proteins from Porphyra yezoensis using innovative physical pre-treatment methods such as stirring, ball milling, and homogenization, under various acidic and alkaline conditions. Enzymatic hydrolysis, employing commercial enzymes at optimal temperature, pH, and enzyme-substrate ratios, produced distinct fractions according to molecular weight. Pepsin demonstrated the highest hydrolysis rate, with the fraction above 10 kDa identified as the most bioactive hydrolysate. Antioxidant activity was evaluated through DPPH, ABTS, ferrous ion chelation, and reducing power assays, demonstrating high antioxidant potential and the ability to mitigate oxidative stress. The 10 kDa fraction of pepsin hydrolysate exhibited 82.6% DPPH activity, 77.5% ABTS activity, 88.4% ferrous ion chelation activity, and higher reducing power potential (0.84 absorbance at 700 nm). Further exploration of mechanisms, amino acid profiles, and potential in vivo benefits is essential to fully exploit the medicinal potential of these algae-derived hydrolysates.

7.
J Food Sci Technol ; 61(8): 1481-1491, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966793

RESUMO

Bioactive polysaccharides and oligosaccharides were successfully extracted from three distinct seaweeds: Sargassum sp., Graciallaria sp., and Ulva sp. utilizing various extraction techniques. The obtained polysaccharides and oligosaccharides were subjected to comprehensive characterization, and their potential antioxidant properties were assessed using a Hep G2 cell model. Analysis via FTIR spectroscopy unveiled the presence of sulfate groups in the polysaccharides and oligosaccharides derived from Sargassum sp. The antioxidant capabilities were assessed through various assays (DPPH, ABTS, Fe-ion chelation, and reducing power), revealing that SAR-OSC exhibited superior antioxidant activity than others. This was attributed to its higher phenolic content (24.6 µg/mg), FRAP value (36 µM Vitamin C/g of extract), and relatively low molecular weight (5.17 kDa). The study also investigated the protective effects of these polysaccharides and oligosaccharides against oxidative stress-induced damage in Hep G2 cells by measuring ROS production and intracellular antioxidant enzyme expressions (SOD, GPx, and CAT). Remarkably, SAR-OSC demonstrated the highest efficacy in protecting Hep G2 cells reducing ROS production and downregulating SOD, GPx, and CAT expressions. Current findings have confirmed that the oligosaccharides extracted by the chemical method show higher antioxidant activity, particularly SAR-OSC, and robust protective abilities in the Hep G2 cells.

8.
J Food Sci Technol ; 61(7): 1283-1294, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38910925

RESUMO

In the current study, ten lactic acid bacteria (LAB) isolates exhibiting anti-α-glucosidase activity were isolated from fermented food. It is directed at novel supplementary diets to prevent/improve diet-induced carbohydrate metabolism disorders and related chronic diseases. Moreover, to evaluate their safety, functionality, and probiotic potential via in vitro simulated test conditions. From 16s-rRNA sequencing, Pediococcus acidilactici (NKUST 803, 845, 858), Lactobacillus plantarum (NKUST 817, 828, 851), Levilactobacillus brevis (NKUST 816, 855) and Lactobacillus acidophilus (NKUST 803, 863) were identified. The results showed that the isolates possessed anti-pathogenic activity, auto-aggregation ability, hydrophobicity (47.44-96.4%), and gastric acid-resistant activity (79-99.1%), which proved their potential for probiotics in nutraceuticals to render hypoglycemic activity or antidiabetic effects to the host positively. Among tested isolates, L. plantarum 817 and P. acidilactici 858 exhibited maximum α-glucosidase inhibitory (AGI) activity of 35-40%. The heat map clearly showed that L. plantarum 817 exhibited the best AGI activity and probiotic potential, among others. These were studied under various simulated gut conditions and safety tests. However, all isolates possess the potential to be used as probiotics in commercial-scale health applications. Pediococcus sp. possesses notable AGI activity but relatively less colonization potential in the gut hence recommended daily intake for positive health effects.

9.
Mol Vis ; 29: 338-356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264613

RESUMO

Purpose: Inflammation and oxidative stress contribute to age-related macular degeneration (AMD) and other retinal diseases. We tested a cell-penetrating peptide from the kinase inhibitory region of an intracellular checkpoint inhibitor suppressor of cytokine signaling 3 (R9-SOCS3-KIR) peptide for its ability to blunt the inflammatory or oxidative pathways leading to AMD. Methods: We used anaphylatoxin C5a to mimic the effect of activated complement, lipopolysaccharide (LPS), and tumor necrosis factor alpha (TNFα) to stimulate inflammation and paraquat to induce mitochondrial oxidative stress. We used a human retinal pigment epithelium (RPE) cell line (ARPE-19) as proliferating cells and a mouse macrophage cell line (J774A.1) to follow cell propagation using microscopy or cell titer assays. We evaluated inflammatory pathways by monitoring the nuclear translocation of NF-κB p65 and mitogen-activated protein kinase p38. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to evaluate the induction of inflammatory markers. In differentiated ARPE-19 monolayers, we evaluated the integrity of tight junction proteins through microscopy and the measurement of transepithelial electrical resistance (TEER). We used intraperitoneal injection of sodium iodate in mice to test the ability of R9-SOC3-KIR to prevent RPE and retinal injury, as assessed by fundoscopy, optical coherence tomography, and histology. Results: R9-SOCS3-KIR treatment suppressed C5a-induced nuclear translocation of the NF-kB activation domain p65 in undifferentiated ARPE-19 cells. TNF-mediated damage to tight junction proteins in RPE, and the loss of TEER was prevented in the presence of R9-SOCS3-KIR. Treatment with the R9-SOCS3-KIR peptide blocked the C5a-induced expression of inflammatory genes. The R9-SOCS3-KIR treatment also blocked the LPS-induced expression of interleukin-6, MCP1, cyclooxygenase 2, and interleukin-1 beta. R9-SOCS3-KIR prevented paraquat-mediated cell death and enhanced the levels of antioxidant effectors. Daily eye drop treatment with R9-SOCS3-KIR protected against retinal injury caused by i.p. administration of sodium iodate. Conclusions: R9-SOCS3-KIR blocks the induction of inflammatory signaling in cell culture and reduces retinal damage in a widely used RPE/retinal oxidative injury model. As this peptide can be administered through corneal instillation, this treatment may offer a convenient way to slow down the progression of ocular diseases arising from inflammation and chronic oxidative stress.


Assuntos
Iodatos , Degeneração Macular , Doenças Retinianas , Humanos , Animais , Camundongos , Lipopolissacarídeos , Paraquat , Retina , Estresse Oxidativo , Peptídeos , Inflamação , Proteínas de Junções Íntimas , Citocinas
10.
Environ Res ; 216(Pt 2): 114400, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265604

RESUMO

Biowaste, produced from nature, is preferred to be a good source of carbon and ligninolytic machinery for many microorganisms. They are complex biopolymers composed of lignin, cellulose, and hemicellulose traces. This biomass can be depolymerized to its nano-dimensions to gain exceptional properties useful in the field of cosmetics, pharmaceuticals, high-strength materials, etc. Nano-sized biomass derivatives overcome the inherent drawbacks of the parent material and offer promises as a potential material for a wide range of applications with their unique traits such as low-toxicity, biocompatibility, biodegradability and environmentally friendly nature with versatility. This review focuses on the production of value-added products feasible from nanocellulose, nano lignin, and xylan nanoparticles which is quite a novel study of its kind. Dawn of nanotechnology has converted bio waste by-products (hemicellulose and lignin) into useful precursors for many commercial products. Nano-cellulose has been employed in the fields of electronics, cosmetics, drug delivery, scaffolds, fillers, packaging, and engineering structures. Xylan nanoparticles and nano lignin have numerous applications as stabilizers, additives, textiles, adhesives, emulsifiers, and prodrugs for many polyphenols with an encapsulation efficiency of 50%. This study will support the potential development of composites for emerging applications in all aspects of interest and open up novel paths for multifunctional biomaterials in nano-dimensions for cosmetic, drug carrier, and clinical applications.


Assuntos
Lignina , Xilanos , Lignina/química , Celulose/química , Biomassa
11.
Acta Anaesthesiol Scand ; 67(5): 569-575, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36691710

RESUMO

This rapid practice guideline provides evidence-based recommendations for the use of awake proning in adult patients with acute hypoxemic respiratory failure due to COVID-19. The panel included 20 experts from 12 countries, including one patient representative, and used a strict conflict of interest policy for potential financial and intellectual conflicts of interest. Methodological support was provided by the guidelines in intensive care, development, and evaluation (GUIDE) group. Based on an updated systematic review, and the grading of recommendations, assessment, development, and evaluation (GRADE) method we evaluated the certainty of evidence and developed recommendations using the Evidence-to-Decision framework. We conducted an electronic vote, requiring >80% agreement amongst the panel for a recommendation to be adopted. The panel made a strong recommendation for a trial of awake proning in adult patients with COVID-19 related hypoxemic acute respiratory failure who are not invasively ventilated. Awake proning appears to reduce the risk of tracheal intubation, although it may not reduce mortality. The panel judged that most patients would want a trial of awake proning, although this may not be feasible in some patients and some patients may not tolerate it. However, given the high risk of clinical deterioration amongst these patients, awake proning should be conducted in an area where patients can be monitored by staff experienced in rapidly detecting and managing clinical deterioration. This RPG panel recommends a trial of awake prone positioning in patients with acute hypoxemic respiratory failure due to COVID-19.


Assuntos
COVID-19 , Deterioração Clínica , Insuficiência Respiratória , Adulto , Humanos , COVID-19/complicações , COVID-19/terapia , Decúbito Ventral , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia , SARS-CoV-2 , Vigília
12.
J Food Sci Technol ; 60(3): 1054-1064, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908337

RESUMO

Bacterial cellulose (BC) has attracted worldwide attention owing to its tremendous properties and versatile applications. BC has huge market demand, however; its production is still limited hence important to explore the economically and technically feasible bioprocess for its improved production. The current study is based on improving the bioprocess for BC production employing Komagataeibacter europeaus 14148. Physico-chemical parameters have been optimized e.g., initial pH, incubation temperature, incubation period, inoculum size, and carbon source for maximum BC production. The study employed crude and/or a defined carbon source in the production medium. Hestrin and Schramm (HS) medium was used for BC production with initial pH 5.5 at 30 °C after 7 days of incubation under static conditions. The yield of BC obtained from fruit juice extracted from orange, papaya, mango and banana were higher than other sugars employed. The maximum BC yield of 3.48 ± 0.16 g/L was obtained with papaya extract having 40 g/L reducing sugar concentration and 3.47 ± 0.05 g/L BC was obtained with orange extract having 40 g/L reducing sugar equivalent in the medium. BC yield was about three-fold higher than standard HS medium. Fruit extracts can be employed as sustainable and economic substrates for BC production to replace glucose and fructose. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05451-y.

13.
J Food Sci Technol ; 60(3): 966-974, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908336

RESUMO

Pidan, a pickled duck egg, is a traditional Chinese cuisine and generally produced by soaking in metal ion containing strong alkaline solution such as NaOH solution. However, nowadays consumers possess negative perception for using strong alkali in food processing. Therefore, the objective of the current study was to determine the potential of incinerated eggshell powder and alkaline electrolyzed oxidized (EO) water for pidan production rather than harmful NaOH use. This study aims to obtain the optimal physicochemical and sensory qualities of pidan. Various dosing (1-5%) of the incinerated eggshell powder solution or alkaline EO water was used as a basic pickling solution. Duck eggs were pickled at 25-27 °C for 15-30 days with 3 days of an observation interval. Actual commercial process commonly undergoes for 14 days of ripening, after 25 days of picking process with incinerated eggshell powder or EO water. Results showed that physicochemical and sensory attributes of pidan obtained by incinerated eggshell powder solution and alkaline EO water were not significantly different (P < 0.05) from the commercial product. This study reports a cost-effective and green alternative method for pidan processing by replacing costly NaOH without compromising their physico-chemical and sensory attributes.

14.
J Food Sci Technol ; 60(3): 1015-1025, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908355

RESUMO

Resveratrol butyrate esters (RBEs), which are novel resveratrol-synthesized derivatives, exhibit increased biological activity. This study elucidated the effect of RBEs on fat metabolism and their anti-obesity characteristics. Their molecular mechanism was investigated in the 3T3-L1 murine preadipocyte cells and adipocytes. RBE doses of < 2 µM did not induce a significant change in the viability of 3T3-L1 adipocytes. After RBEs treatment, intracellular lipid droplet accumulation in 3T3-L1 adipocytes was stimulated by methylisobutylxanthine, dexamethasone, and insulin-containing medium. However, a significant dose-dependent reduction in intracellular lipid levels was observed. The mRNA levels of two adipogenic transcription factors (peroxisome proliferator-activated receptor [PPAR] and CCAAT/enhancer-binding proteins [C/EBP]) and lipogenic proteins (fatty acid-binding protein 4 [FABP4] and fatty acid synthase [FAS]) were significantly attenuated by RBE treatment in both MDI-stimulated and differentiated 3T3-L1 adipocytes. Moreover, the phosphorylation level of adenosine monophosphate-activated protein kinase (AMPK) also dramatically increased in the MDI + RBE-treated group compared to that in the MDI + vehicle-treated group. Collectively, our study provides strong evidence that RBEs inhibit adipogenesis by regulating adipogenic protein expression and increasing the p-AMPK/AMPK ratio. Future studies will be conducted on animal models to validate the application of RBEs as a functional food ingredient in improving human health. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05436-x.

15.
J Food Sci Technol ; 60(12): 2955-2967, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37786601

RESUMO

Heterotrophic fast-growing thraustochytrids have been identified as promising candidates for the bioconversion of organic sources into industrially important valuable products. Marine thraustochytrids exhibit remarkable potential for high-value polyunsaturated fatty acids (PUFAs) production however their potential is recently discovered for high-value carotenoids and terpenoids which also have a role as a dietary supplement and health promotion. Primarily, omega-3 and 6 PUFAs (DHA, EPA, and ARA) from thraustochytrids are emerging sources of nutrient supplements for vegetarians replacing animal sources and active pharmaceutical ingredients due to excellent bioactivities. Additionally, thraustochytrids produce reasonable amounts of squalene (terpenoid) and carotenoids which are also high-value products with great market potential. Hence, these can be coextracted as a byproduct with PUFAs under the biorefinery concept. There is still quite a few printed information on bioprocess conditions for decent (co)-production of squalene and carotenoid from selective protists such as lutein, astaxanthin, canthaxanthin, and lycopene. The current review seeks to provide a concise overview of the coproduction and application of PUFAs, carotenoids, and terpenoids from oleaginous thraustochytrids and their application to human health.

16.
J Food Sci Technol ; 60(3): 1045-1053, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908344

RESUMO

Old preserved radish (OPR), a traditional pickled-food of Asia, contains the healthy bioactive compounds, such as phenols and flavonoids. To preserve the phenols levels in radish by thermal treatment, which are decreased due to the polyphenol oxidase activity during long storage. Range of thermal processing evaluated to retain the maximum phenols level in the radish while processed at temperatures of 70 °C, 80 °C and 90 °C for 30 days. In this study, the bioactive compounds and antioxidant activity of thermal processing radish (TPR) were evaluated and compared with commercial products of OPR. Results showed the best condition of thermal processing, 80°C for 30 days, could increase the values of phenols, flavonoids and antioxidant activity that were 2.27, 2.74 and 2.89 times, respectively. When comparing the thermally processed radish or TPR with OPR, TPR has a higher content of phenols and flavonoids, indicating that the thermal processing was effective to increase the content of functional compounds in radish and significantly improved its nutritional values.

17.
J Food Sci Technol ; 60(3): 1006-1014, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908362

RESUMO

Pacific saury is a primarily wild-caught fish in Taiwan and contains high amounts of polyunsaturated fatty acids (PUFAs). Therefore, its consumption is encouraged by Taiwanese government due to its high nutrition values and affordable price. In this study, four products, Minced saury with pork, Minced saury with XO sauce, Crispy dried saury, and Saury roll with roe, were developed. Optimization of the processing and ingredients were determined by a group of expert panelists, then by a large group of regular consumers. Total bacterial count, coliform, Escherichia coli, volatile base nitrogen, water content, and water activity were analyzed for shelf-life stability. In addition, the indexes of oil oxidation such as acid values, peroxide, and thiobarbituric acid were determined for the oil quality of products. Compositions of fatty acids and fragrant compounds were also analyzed. All microbial, physicochemical, and oil oxidation indexes of the products complied with the official regulations and industrial standards of Taiwan. Composition of fragrant compounds closely related with sensory characteristics and PUFAs composition were not degraded by the processing and storage. A new brand name, Hsiung-Chou, and the logo were established and the products were contracted to manufacturers for commercial production. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05432-1.

18.
J Food Sci Technol ; 60(7): 1992-2000, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37206414

RESUMO

Identifying the risk of ochratoxin A in our daily food has become fundamental because of its toxicity. In this work, we report a novel semi-automated in-syringe-based fast mycotoxin extraction (IS-FaMEx) technique coupled with direct-injection electrospray-ionization tandem mass spectrometer (ESI-MS/MS) detection for the quantification of ochratoxin A in coffee and tea samples. Under the optimized conditions, the results reveal that the developed method's linearity was more remarkable, with a correlation coefficient of > 0.999 and > 92% extraction recovery with a precision of 6%. The detection and quantification limits for ochratoxin A were 0.2 and 0.8 ng g-1 for the developed method, respectively, which is lower than the European Union regulatory limit of toxicity for ochratoxin-A (5 ng g-1) in coffee. Furthermore, the newly developed modified IS-FaMEx-ESI-MS/MS exhibited lower signal suppression of 8% with a good green metric score of 0.64. In addition, the IS-FaMEx-ESI-MS/MS showed good extraction recovery, matrix elimination, good detection, and quantification limits with high accuracy and precision due to the fewer extraction steps with semi-automation. Therefore, the presented method can be applied as a potential methodology for the detection of mycotoxins in food products for food safety and quality control purposes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05733-z.

19.
Mar Drugs ; 20(6)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35736167

RESUMO

Alginate is a hydrocolloid from algae, specifically brown algae, which is a group that includes many of the seaweeds, like kelps and an extracellular polymer of some bacteria. Sodium alginate is one of the best-known members of the hydrogel group. The hydrogel is a water-swollen and cross-linked polymeric network produced by the simple reaction of one or more monomers. It has a linear (unbranched) structure based on d-mannuronic and l-guluronic acids. The placement of these monomers depending on the source of its production is alternating, sequential and random. The same arrangement of monomers can affect the physical and chemical properties of this polysaccharide. This polyuronide has a wide range of applications in various industries including the food industry, medicine, tissue engineering, wastewater treatment, the pharmaceutical industry and fuel. It is generally recognized as safe when used in accordance with good manufacturing or feeding practice. This review discusses its application in addition to its structural, physical, and chemical properties.


Assuntos
Alginatos , Phaeophyceae , Alginatos/química , Bactérias , Ácidos Hexurônicos/química , Hidrogéis , Polímeros , Polissacarídeos
20.
Invest New Drugs ; 39(3): 636-643, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33230623

RESUMO

In order to suppress 5' cap-mediated translation a highly available inhibitor of the interaction between the 5' mRNA cap and the eIF4E complex has been developed. 4Ei-10 is a member of the class of ProTide compounds and has elevated membrane permeability and is a strong active chemical antagonist for eIF4E. Once taken up by cells it is converted by anchimeric activation of the lipophilic 2-(methylthio) ethyl protecting group and after that Hint1 P-N bond cleavage to N7-(p-chlorophenoxyethyl) guanosine 5'-monophosphate (7-Cl-Ph-Ethyl-GMP). Using this powerful interaction, it has been demonstrated that 4Ei-10 inhibits non-small cell lung cancer (NSCLC) cell growth. In addition, treatment of NSCLC cells with 4Ei-10 results in suppression of translation and diminished expression of a cohort of cellular proteins important to maintaining the malignant phenotype and resisting apoptosis such as Bcl-2, survivin, and ornithine decarboxylase (ODC). Finally, as a result of targeting the translation of anti-apoptotic proteins, NSCLC cells are synergized to be more sensitive to the existing anti-neoplastic treatment gemcitabine currently used in NSCLC therapy.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Fator de Iniciação 4E em Eucariotos , Neoplasias Pulmonares , Nucleotídeos , Pró-Fármacos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Interações Medicamentosas , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Pró-Fármacos/farmacologia , Nucleotídeos/farmacologia , Nucleotídeos/uso terapêutico , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA