Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 182(2): 792-803, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27988856

RESUMO

Aspartase (L-aspartate ammonia lyase, EC 4.3.1.1) catalyses the reversible amination and deamination of L-aspartic acid to fumaric acid which can be used to produce important biochemical. In this study, we have explored the characteristics of aspartase from Pseudomonas aeruginosa PAO1 (PA-AspA). To overproduce PA-AspA, the 1425-bp gene was introduced in Escherichia coli BL21 and purified. A 51.0-kDa protein was observed as a homogenous purified protein on SDS-PAGE. The enzyme was optimally active at pH 8.0 and 35 °C. PA-AspA has retained 56% activity after 7 days of incubation at 35 °C, which displays the hyperthermostablility characteristics of the enzyme. PA-AspA is activated in the presence of metal ions and Mg2+ is found to be most effective. Among the substrates tested for specificity of PA-AspA, L-phenylalanine (38.35 ± 2.68) showed the highest specific activity followed by L-aspartic acid (31.21 ± 3.31) and fumarate (5.42 ± 2.94). K m values for L-phenylalanine, L-aspartic acid and fumarate were 1.71 mM, 0.346 µM and 2 M, respectively. The catalytic efficiency (k cat/K m) for L-aspartic acid (14.18 s-1 mM-1) was higher than that for L-phenylalanine (4.65 s-1 mM-1). For bioconversion, from an initial concentration of 1000 mM of fumarate and 30 mM of L-phenylalanine, PA-AspA was found to convert 395.31 µM L-aspartic acid and 3.47 mM cinnamic acid, respectively.


Assuntos
Aspartato Amônia-Liase/química , Ácido Aspártico/química , Proteínas de Bactérias/química , Cinamatos/química , Pseudomonas aeruginosa/enzimologia , Temperatura Alta , Concentração de Íons de Hidrogênio
2.
Enzyme Microb Technol ; 97: 27-33, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28010770

RESUMO

l-ribose and d-tagatose are biochemically synthesized using sugar isomerases. The l-arabinose isomerase gene from Shigella flexneri (Sf-AI) was cloned and expressed in Escherichia coli BL-21. Sf-AI was applied for the bioproduction of d-tagatose from d-galactose. l-ribose synthesis was performed by two step isomerization using Sf-AI and d-lyxose/ribose isomerase from Cohnella laevoribosii. The overall 22.3% and 25% conversion rate were observed for d-tagatose and l-ribose production from d-galactose and l-arabinose respectively. In the present manuscript, synthesis of rare sugars from naturally available sugars is discussed along with the biochemical characterization of Sf-AI and its efficiency.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Hexoses/biossíntese , Ribose/biossíntese , Aldose-Cetose Isomerases/genética , Arabinose/metabolismo , Bacillales/enzimologia , Bacillales/genética , Biotecnologia , Clonagem Molecular , Estabilidade Enzimática , Galactose/metabolismo , Genes Bacterianos , Hexoses/química , Cinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribose/química , Shigella flexneri/enzimologia , Shigella flexneri/genética , Estereoisomerismo
3.
Appl Biochem Biotechnol ; 179(5): 715-27, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26922727

RESUMO

Pseudomonas aeruginosa PAO1 phosphoglucose isomerase was purified as an active soluble form by a single-step purification using Ni-NTA chromatography that showed homogeneity on SDS-PAGE with molecular mass ∼62 kDa. The optimum temperature and pH for the maximum isomerization activity with D-galactose were 60 °C and 7.0, respectively. Generally, sugar phosphate isomerases show metal-independent activity but PA-PGI exhibited metal-dependent isomerization activity with aldosugars and optimally catalyzed the D-galactose isomerization in the presence of 1.0 mM MnCl2. The apparent Km and Vmax for D-galactose under standardized conditions were calculated to be 1029 mM (±31.30 with S.E.) and 5.95 U/mg (±0.9 with S.E.), respectively. Equilibrium reached after 180 min with production of 567.51 µM D-tagatose from 1000 mM of D-galactose. Though, the bioconversion ratio is low but it can be increased by immobilization and enzyme engineering. Although various L-arabinose isomerases have been characterized for bioproduction of D-tagatose, P. aeruginosa glucose phosphate isomerase is distinguished from the other L-arabinose isomerases by its optimal temperature (60 °C) for D-tagatose production being mesophilic bacteria, making it an alternate choice for bulk production.


Assuntos
Glucose-6-Fosfato Isomerase/isolamento & purificação , Hexoses/biossíntese , Pseudomonas aeruginosa/enzimologia , Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Sequência de Aminoácidos/genética , Arabinose/metabolismo , Clonagem Molecular , Escherichia coli/genética , Galactose/química , Glucose-6-Fosfato Isomerase/química , Glucose-6-Fosfato Isomerase/genética , Hexoses/química , Temperatura
4.
Gut Microbes ; 4(3): 181-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23511582

RESUMO

Colorectal Cancer (CRC) is the second leading cause of cancer-related mortality and is the fourth most common malignant neoplasm in USA. Escaping apoptosis and cell mutation are the prime hallmarks of cancer. It is apparent that balancing the network between DNA damage and DNA repair is critical in preventing carcinogenesis. One-third of cancers might be prevented by nutritious healthy diet, maintaining healthy weight and physical activity. In this review, an attempt is made to abridge the role of carcinogen in colorectal cancer establishment and prognosis, where special attention has been paid to food-borne mutagens and functional role of beneficial human gut microbiome in evading cancer. Further the significance of tailor-made prebiotics, probiotics and synbiotics in cancer management by bio-antimutagenic and desmutagenic activity has been elaborated. Probiotic bacteria are live microorganisms that, when administered in adequate amounts, confer a healthy benefit on the host. Prebiotics are a selectively fermentable non-digestible oligosaccharide or ingredient that brings specific changes, both in the composition and/or activity of the gastrointestinal microflora, conferring health benefits. Synbiotics are a combination of probiotic bacteria and the growth promoting prebiotic ingredients that purport "synergism."


Assuntos
Neoplasias Colorretais/terapia , Prebióticos , Probióticos/administração & dosagem , Simbióticos , Antimutagênicos/administração & dosagem , Trato Gastrointestinal/microbiologia , Humanos , Fatores Imunológicos/administração & dosagem , Metagenoma , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA