RESUMO
Arboreal primates such as chimpanzees exhibit pronounced curvature in their hand and foot phalanges, which is assumed to develop throughout life in response to mechanical loads produced by grasping and hanging from branches. Intriguingly, ancient fossil hominins also exhibit substantial phalangeal curvature, which, too, has been interpreted as a direct result of habitual arboreality during life. Here, we describe the phalangeal curvature of a chimpanzee who was raised during the 1930s in New York City to live much like a human, including by having very few opportunities to engage in arboreal activities. We show that the degree of hand and foot phalangeal curvature in this individual is indistinguishable from that of wild chimpanzees and distinct from humans. Thus, rather than being a direct effect of mechanical loads produced by lifetime arboreal activities, phalangeal curvature appears to be shaped largely by genetic factors. An important implication of this finding is that phalangeal curvature among fossil hominins is evidently best interpreted as a primitive trait inherited from an arboreal ancestral species rather than proof of engagement in arboreal activities during life.
Assuntos
Falanges dos Dedos da Mão/anatomia & histologia , Falanges dos Dedos do Pé/anatomia & histologia , Animais , Feminino , Falanges dos Dedos da Mão/fisiologia , Fósseis , Humanos , Locomoção/fisiologia , Pan troglodytes/anatomia & histologia , Pan troglodytes/fisiologiaRESUMO
In 2000, a complete fourth metatarsal (Mt4) of the â¼3- to 4-Million-year-old hominin Australopithecus afarensis was recovered in Hadar, Ethiopia. This metatarsal presented a mostly human-like morphology, suggesting that a rigid lateral foot may have evolved as early as â¼3.2 Ma. The lateral foot is integral in providing stability during the push off phase of gait and is key in understanding the transition to upright, striding bipedalism. Previous comparisons of this fossil were limited to Pan troglodytes, Gorilla gorilla, and modern humans. This study builds on previous studies by contextualizing the Mt4 morphology of A. afarensis (A.L. 333-160) within a diverse comparative sample of nonhuman hominoids (n = 144) and cercopithecids (n = 138) and incorporates other early hominins (n = 3) and fossil hominoids that precede the Pan-Homo split (n = 4) to better assess the polarity of changes in lateral foot morphology surrounding this divergence. We investigate seven morphological features argued to be functionally linked to human-like bipedalism. Our results show that some human-like characters used to assess midfoot and lateral foot stiffness in the hominin fossil record are present in our Miocene ape sample as well as in living cercopithecids. Furthermore, modern nonhuman hominoids can be generally distinguished from other species in most metrics. These results suggest that the possession of a rigid foot in hominins could represent a conserved trait, whereas the specialized pedal grasping mechanics of extant apes may be more derived, in which case some traits often used to infer bipedal locomotion in early hominins may, instead, reflect a lower reliance on pedal grasping. Another possibility is that early hominins reverted from modern ape Mt4 morphology into a more plesiomorphic condition when terrestrial bipedality became a dominant behavior. More fossils dating around the Pan-Homo divergence time are necessary to test these competing hypotheses.
Assuntos
Hominidae , Ossos do Metatarso , Animais , Evolução Biológica , Pé/anatomia & histologia , Fósseis , Ossos do Metatarso/anatomia & histologiaRESUMO
Homo naledi fossils from the Rising Star cave system provide important insights into the diversity of hand morphology within the genus Homo. Notably, the pollical (thumb) metacarpal (Mc1) displays an unusual suite of characteristics including a median longitudinal crest, a narrow proximal base, and broad flaring intrinsic muscle flanges. The present study evaluates the affinities of H. naledi Mc1 morphology via 3D geometric morphometric analysis of shaft shape using a broader comparative sample (n = 337) of fossil hominins, recent humans, apes, and cercopithecoid monkeys than in prior work. Results confirm that the H. naledi Mc1 is distinctive from most other hominins in being narrow at the proximal end but surmounted by flaring muscle flanges distally. Only StW 418 (Australopithecus cf. africanus) is similar in these aspects of shape. The gracile proximal shaft is most similar to cercopithecoids, Pan, Pongo, Australopithecus afarensis, and Australopithecus sediba, suggesting that H. naledi retains the condition primitive for the genus Homo. In contrast, Neandertal Mc1s are characterized by wide proximal bases and shafts, pinched midshafts, and broad distal flanges, while those of recent humans generally have straight shafts, less robust muscle flanges, and wide proximal shafts/bases. Although uncertainties remain regarding character polarity, the morphology of the H. naledi thumb might be interpreted as a retained intermediate state in a transformation series between the overall gracility of the shaft and the robust shafts of later hominins. Such a model suggests that the addition of broad medial and lateral muscle flanges to a primitively slender shaft was the first modification in transforming the Mc1 into the overall more robust structure exhibited by other Homo taxa including Neandertals and recent Homo sapiens in whose shared lineage the bases and proximal shafts became expanded, possibly as an adaptation to the repeated recruitment of powerful intrinsic pollical muscles.
Assuntos
Fósseis , Hominidae/anatomia & histologia , Ossos Metacarpais/anatomia & histologia , Animais , Evolução Biológica , Cavernas , Haplorrinos/anatomia & histologia , Humanos , Homem de Neandertal/anatomia & histologiaRESUMO
OBJECTIVES: The little known guenon Cercopithecus dryas has a controversial taxonomic history with some recognizing two taxa (C. dryas and C. salongo) instead of one. New adult specimens from the TL2 region of the central Congo Basin allow further assessment of C. dryas morphology and, along with CT scans of the juvenile holotype, provide ontogenetically stable comparisons across all C. dryas and "C. salongo" specimens for the first time. MATERIALS AND METHODS: The skins and skulls of two newly acquired C. dryas specimens, male YPM MAM 16890 and female YPM MAM 17066, were compared to previously described C. dryas and "C. salongo" specimens, along with a broader guenon comparative sample (cranial sample n = 146, dental sample n = 102). Qualitative and quantitative assessments were made on the basis of commonly noted pelage features as well as craniodental characters in the form of shape ratios and multivariate discriminant analyses. RESULTS: All C. dryas specimens, including the TL2 adults, are comparatively small in overall cranial size, have relatively small I1 s, and display tall molar cusps; these osteological characters, along with pelage features, are shared with known "C. salongo" specimens. Discriminant analyses of dental features separate C. dryas/salongo specimens from all other guenons. DISCUSSION: In addition to pelage-based evidence, direct osteological evidence suggests "C. salongo" is a junior synonym of C. dryas. Combined with molecular analyses suggesting C. dryas is most closely related to Chlorocebus spp., we emend the species diagnosis and support its transfer to Chlorocebus or possibly a new genus to reflect its distinctiveness.
Assuntos
Cercopithecinae , Dente , Animais , Congo , Feminino , Masculino , Filogenia , Crânio/diagnóstico por imagem , Dente/diagnóstico por imagemRESUMO
The primate foot functions as a grasping organ. As such, its bones, soft tissues, and joints evolved to maximize power and stability in a variety of grasping configurations. Humans are the obvious exception to this primate pattern, with feet that evolved to support the unique biomechanical demands of bipedal locomotion. Of key functional importance to bipedalism is the morphology of the joints at the forefoot, known as the metatarsophalangeal joints (MTPJs), but a comprehensive analysis of hominin MTPJ morphology is currently lacking. Here we present the results of a multivariate shape and Bayesian phylogenetic comparative analyses of metatarsals (MTs) from a broad selection of anthropoid primates (including fossil apes and stem catarrhines) and most of the early hominin pedal fossil record, including the oldest hominin for which good pedal remains exist, Ardipithecus ramidus Results corroborate the importance of specific bony morphologies such as dorsal MT head expansion and "doming" to the evolution of terrestrial bipedalism in hominins. Further, our evolutionary models reveal that the MT1 of Ar. ramidus shifts away from the reconstructed optimum of our last common ancestor with apes, but not necessarily in the direction of modern humans. However, the lateral rays of Ar. ramidus are transformed in a more human-like direction, suggesting that they were the digits first recruited by hominins into the primary role of terrestrial propulsion. This pattern of evolutionary change is seen consistently throughout the evolution of the foot, highlighting the mosaic nature of pedal evolution and the emergence of a derived, modern hallux relatively late in human evolution.
Assuntos
Evolução Biológica , Hominidae , Ossos do Metatarso , Filogenia , Animais , Hominidae/anatomia & histologia , Hominidae/fisiologia , Ossos do Metatarso/anatomia & histologia , Ossos do Metatarso/fisiologiaRESUMO
The fossil record of 'lesser apes' (i.e. hylobatids = gibbons and siamangs) is virtually non-existent before the latest Miocene of East Asia. However, molecular data strongly and consistently suggest that hylobatids should be present by approximately 20 Ma; thus, there are large temporal, geographical, and morphological gaps between early fossil apes in Africa and the earliest fossil hylobatids in China. Here, we describe a new approximately 12.5-13.8 Ma fossil ape from the Lower Siwaliks of Ramnagar, India, that fills in these long-standing gaps with implications for hylobatid origins. This ape represents the first new hominoid species discovered at Ramnagar in nearly a century, the first new Siwalik ape taxon in more than 30 years, and likely extends the hylobatid fossil record by approximately 5 Myr, providing a minimum age for hylobatid dispersal coeval to that of great apes. The presence of crown hylobatid molar features in the new species indicates an adaptive shift to a more frugivorous diet during the Middle Miocene, consistent with other proposed adaptations to frugivory (e.g. uricase gene silencing) during this time period as well.
Assuntos
Evolução Biológica , Fósseis , Hylobatidae , Animais , Índia , Filogenia , PrimatasRESUMO
Functional comparisons of cortical bone strength properties between hominoid hallucal and pollical metapodials (Mt1 and Mc1, respectively) are lacking. Determining which of these two elements is stronger, and by how much, could be informative because the hallux and pollex are used differently both within and among extant hominoids during locomotion and manipulation (i.e., functional differentiation between autopod pairs). Here, we compare Mt1 and Mc1 midshaft cortical area, polar section modulus, and polar second moment of area, calculated from high-resolution computed tomography images in humans (n = 21), chimpanzees (n = 47), gorillas (n = 24), orangutans (n = 20), siamangs (n = 8), and gibbons (n = 21). Intraindividual comparisons between bones within species were made using paired t-tests. Log10-transformed Mt1:Mc1 ratios were created to assess relative strength asymmetry between bones, and interspecific comparisons of these proportions were made using analyses of variance. Absolute strength differences between the Mt1 and Mc1 for all variables were significantly larger in the Mt1 for all species (p < 0.05). Significant differences across species in Mt1:Mc1 proportions were also found, thereby demonstrating that strength asymmetry between bones differs among taxa (p < 0.05); asymmetry was lowest in orangutans, intermediate in gorillas, and greatest in humans, chimpanzees, siamangs, and gibbons. These findings support the hypothesis that the Mt1 is better adapted structurally than the Mc1 for bearing mechanical loads during weight support of locomotion in all extant hominoids and that pedal hallucal grasping likely engenders higher loads than manual pollical grasping in nonhuman hominoids. Thus, functional differentiation in autopod use within and among hominoids is reflected in hallucal and pollical metapodial strength properties.
Assuntos
Hallux/fisiologia , Hominidae/fisiologia , Hylobatidae/fisiologia , Polegar/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Masculino , Resistência ao CisalhamentoRESUMO
OBJECTIVES: Small-bodied vertical clinging and leaping primates have elongated calcanei which enhance leap performance by optimizing leap velocity, distance, and acceleration, but at the expense of experiencing relatively large forces during takeoff and landing. This study tests the hypothesis that the elongated calcaneus of leaping galagids is adapted to resist larger and more stereotyped bending loads compared to more quadrupedal galagids. MATERIALS AND METHODS: The calcanei of 14 individuals of Otolemur and 14 individuals of Galago (three species of each genus) were µCT scanned. Calcaneal cross-sectional properties (maximum and minimum second moments of area and polar section modulus) were obtained from a slice representing the 50% position of bone segment length and dimensionless ratios were created for each variable using calcaneal cuboid facet area as a proxy for body mass. RESULTS: There were no significant differences in size-adjusted bending strength between Galago and Otolemur. Galago exhibited more elliptically shaped calcaneal cross sections, however, suggesting that its calcanei are more adapted to stereotyped loading regimes than those of Otolemur. DISCUSSION: The results suggest that the calcaneus of specialized leapers is adapted to more stereotyped loading patterns. The lack of predicted bone strength differences between Galago and Otolemur may be related to body size differences between these taxa, or it may indicate that loads encountered by Galago during naturalistic leaping are not reflected in the available experimental force data.
Assuntos
Calcâneo/crescimento & desenvolvimento , Osso Cortical/fisiologia , Galagidae/fisiologia , Adaptação Biológica , Animais , Fenômenos Biomecânicos , Feminino , Galago/fisiologia , Masculino , Especificidade da EspécieRESUMO
The human clavicle (i.e. collarbone) is an unusual long bone due to its signature S-shaped curve and variability in macrostructure observed between individuals. Because of the complex nature of how the upper limb moves, as well as due to its complex musculoskeletal arrangement, the biomechanics, in particular the mechanical loadings, of the clavicle are not fully understood. Given that bone remodeling can be influenced by bone stress, the histologic organization of Haversian bone offers a hypothesis of responses to force distributions experienced across a bone. Furthermore, circularly polarized light microscopy can be used to determine the orientation of collagen fibers, providing additional information on how bone matrix might organize to adapt to direction of external loads. We examined Haversian density and collagen fiber orientation, along with cross-sectional geometry, to test whether the clavicle midshaft shows unique adaptation to atypical load-bearing when compared with the sternal (medial) and acromial (lateral) shaft regions. Because fractures are most common at the midshaft, we predicted that the cortical bone structure would show both disparities in Haversian remodeling and nonrandomly oriented collagen fibers in the midshaft compared with the sternal and acromial regions. Human clavicles (n = 16) were sampled via thin-sections at the sternal, middle, and acromial ends of the shaft, and paired sample t-tests were employed to evaluate within-individual differences in microstructural or geometric properties. We found that Haversian remodeling is slightly but significantly reduced in the middle of the bone. Analysis of collagen fiber orientation indicated nonrandom fiber orientations that are overbuilt for tensile loads or torsion but are poorly optimized for compressive loads throughout the clavicle. Geometric properties of percent bone area, polar second moment of area, and shape (Imax /Imin ) confirmed the conclusions drawn by existing research on clavicle macrostructure. Our results highlight that mediolateral shape changes might be accompanied by slight changes in Haversian density, but bone matrix organization is predominantly adapted to resisting tensile strains or torsion throughout and may be a major factor in the risk of fracture when experiencing atypical compression.
Assuntos
Clavícula/anatomia & histologia , Osso Cortical/anatomia & histologia , Suporte de Carga/fisiologia , Remodelação Óssea/fisiologia , Clavícula/fisiologia , Osso Cortical/fisiologia , Humanos , Estresse MecânicoRESUMO
PURPOSE: Hemi-hamate arthroplasty has been described as a viable treatment option for unstable proximal interphalangeal joint fracture-dislocations. The procedure uses a dorsal distal hamate osteochondral graft to recreate the injured volar middle phalanx (MP) proximal base. The purpose of this study was to evaluate the similarity in shape of these articular surfaces using quantitative 3-dimensional methods. METHODS: Three-dimensional virtual renderings were created from laser scans of the articular surfaces of the dorsal distal hamate and the volar MP bases of the index, middle, ring, and little fingers from cadaveric hands of 25 individuals. Three-dimensional landmarks were obtained from the articular surfaces of each bone and subjected to established geometric morphometric analytical approaches to quantify shape. For each individual, bone shapes were evaluated for covariation using 2-block partial least-squares and principal component analyses. RESULTS: No statistically significant covariation was found between the dorsal distal hamate and volar MP bases of the middle, ring, or little digits. Whereas the volar MP bases demonstrated relative morphologic uniformity among the 4 digits both within and between individuals, the dorsal distal hamates exhibited notable variation in articular surface morphology. CONCLUSIONS: Despite the early to midterm clinical success of hemi-hamate arthroplasty, there is no statistically significant, uniform similarity in shape between the articular surfaces of the dorsal distal hamate and the volar MP base. In addition, there is wide variation in the articular morphology of the hamate among individuals. CLINICAL RELEVANCE: The lack of uniform similarity in shape between the dorsal distal hamate and the volar MP base may result in unpredictable outcomes in HHA. It is recommended that the variation in hamate morphology be considered while reconstructing the injured volar MP base in the procedure.
Assuntos
Falanges dos Dedos da Mão/anatomia & histologia , Falanges dos Dedos da Mão/diagnóstico por imagem , Hamato/anatomia & histologia , Hamato/diagnóstico por imagem , Imageamento Tridimensional , Pontos de Referência Anatômicos , Cadáver , Feminino , Humanos , Lasers , Análise dos Mínimos Quadrados , Masculino , Análise de Componente PrincipalRESUMO
Bone modeling and remodeling are aerobic processes that entail relatively high oxygen demands. Long bones receive oxygenated blood from nutrient arteries, epiphyseal-metaphyseal arteries, and periosteal arteries, with the nutrient artery supplying the bulk of total blood volume in mammals (~ 50-70%). Estimates of blood flow into these bones can be made from the dimensions of the nutrient canal, through which nutrient arteries pass. Unfortunately, measuring these canal dimensions non-invasively (i.e. without physical sectioning) is difficult, and thus researchers have relied on more readily visible skeletal proxies. Specifically, the size of the nutrient artery has been estimated from dimensions (e.g. minimum diameters) of the periosteal (external) opening of the nutrient canal. This approach has also been utilized by some comparative morphologists and paleontologists, as the opening of a nutrient canal is present long after the vascular soft tissue has degenerated. The literature on nutrient arteries and canals is sparse, with most studies consisting of anatomical descriptions from surgical proceedings, and only a few investigating the links between nutrient canal morphology and physiology or behavior. The primary objective of this study was to evaluate femur nutrient canal morphology in mice with known physiological and behavioral differences; specifically, mice from an artificial selection experiment for high voluntary wheel-running behavior. Mice from four replicate high runner (HR) lines are known to differ from four non-selected control (C) lines in both locomotor and metabolic activity, with HR mice having increased voluntary wheel-running behavior and maximal aerobic capacity (VO2 max) during forced treadmill exercise. Femora from adult mice (average age 7.5 months) of the 11th generation of this selection experiment were µCT-scanned and three-dimensional virtual reconstructions of nutrient canals were measured for minimum cross-sectional area as a skeletal proxy of blood flow. Gross observations revealed that nutrient canals varied far more in number and shape than prior descriptions would indicate, regardless of sex or genetic background (i.e. HR vs. C lines). Canals adopted non-linear shapes and paths as they traversed from the periosteal to endosteal borders through the cortex, occasionally even branching within the cortical bone. Additionally, mice from both HR and C lines averaged more than four nutrient canals per femur, in contrast to the one to two nutrient canals described for femora from rats, pigs, and humans in prior literature. Mice from HR lines had significantly larger total nutrient canal area than C lines, which was the result not of an increase in the number of nutrient canals, but rather an increase in their average cross-section size. This study demonstrates that mice with an evolutionary history of increased locomotor activity and maximal aerobic metabolic rate have a concomitant increase in the size of their femoral nutrient canals. Although the primary determinant of nutrient canal size is currently not well understood, the present results bolster use of nutrient canal size as a skeletal indicator of aerobically supported levels of physical activity in comparative studies.
Assuntos
Fêmur/anatomia & histologia , Ósteon/anatomia & histologia , Atividade Motora/genética , Seleção Artificial , Animais , Feminino , Masculino , Camundongos , Fenótipo , Fatores SexuaisRESUMO
Life history variables including the timing of locomotor independence, along with changes in preferred locomotor behaviors and substrate use during development, influence how primates use their feet throughout ontogeny. Changes in foot function during development, in particular the nature of how the hallux is used in grasping, can lead to different structural changes in foot bones. To test this hypothesis, metatarsal midshaft rigidity [estimated from the polar second moment of area (J) scaled to bone length] and cross-sectional shape (calculated from the ratio of maximum and minimum second moments of area, Imax /Imin ) were examined in a cross-sectional ontogenetic sample of rhesus macaques (Macaca mulatta; nâ =â 73) and common chimpanzees (Pan troglodytes; nâ =â 79). Results show the hallucal metatarsal (Mt1) is relatively more rigid (with higher scaled J-values) in younger chimpanzees and macaques, with significant decreases in relative rigidity in both taxa until the age of achieving locomotor independence. Within each age group, Mt1 rigidity is always significantly higher in chimpanzees than macaques. When compared with the lateral metatarsals (Mt2-5), the Mt1 is relatively more rigid in both taxa and across all ages; however, this difference is significantly greater in chimpanzees. Length and J scale with negative allometry in all metatarsals and in both species (except the Mt2 of chimpanzees, which scales with positive allometry). Only in macaques does Mt1 midshaft shape significantly change across ontogeny, with older individuals having more elliptical cross-sections. Different patterns of development in metatarsal diaphyseal rigidity and shape likely reflect the different ways in which the foot, and in particular the hallux, functions across ontogeny in apes and monkeys.
Assuntos
Macaca mulatta/anatomia & histologia , Ossos do Metatarso/anatomia & histologia , Pan troglodytes/anatomia & histologia , Animais , Estudos Transversais , Hallux , Especificidade da EspécieRESUMO
When measured as a ratio of mean midshaft diameter to bone length, the OH 8 fossil hominin foot exhibits a metatarsal (Mt) robusticity pattern of 1 > 5 > 3 > 4 > 2, which differs from the widely perceived "common" modern human pattern (1 > 5 > 4 > 3 > 2); African apes generally exhibit a third pattern (1 > 2 > 3 > 4 > 5). Largely because of the relative ranking of Mt2 and Mt5, OH 8 metatarsals structurally resemble the pattern exhibited by bipedal humans more than the pattern of quadrupedal and climbing African apes. Considering only these three phenotypes, however, discounts the potentially important functional implications of variation in modern human (and African ape) metatarsal robusticity patterns, suggesting that they are not useful for interpreting the specific biomechanics of a bipedal gait in fossils (i.e., whether it was modern human-like or not). Using computed tomography scans to quantify metatarsal midshaft cross-sectional geometry in a large sample of Homo (n=130), Gorilla (n=44) and Pan (n=80), we documented greater variation in metatarsal robusticity patterns than previously recognized in all three groups. While apes consistently show a 1 > 2 > 3 > 4 > 5 pattern in our larger sample, there does not appear to be a similarly precise single "common" human pattern. Rather, human metatarsals converge towards a 1 > 4/5 > 2/3 pattern, where metatarsals 4 and 5, and metatarsals 2 and 3, often "flip" positions relative to each other depending on the variable examined. After reassessing what a "common" human pattern could be based on a larger sample, the previously described OH 8 pattern of 1 > 5 > 3 > 4 > 2 is only observed in some humans (<6%) and almost never in apes (<0.5%). Although this suggests an overall greater similarity to (some) humans than to any ape in loading of the foot, the relatively rare frequency of these humans in our sample underscores potential differences in loading experienced by the medial and lateral columns of the OH 8 foot compared to modern humans.
Assuntos
Pé/fisiologia , Hominidae/fisiologia , Ossos do Metatarso/fisiologia , Caminhada , Animais , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , TanzâniaRESUMO
Songhor is an early Miocene fossil locality in Kenya known for its diverse primate assemblage that includes catarrhine species belonging to the genera Kalepithecus, Limnopithecus, Dendropithecus, Rangwapithecus, and Proconsul. Expeditions to Songhor since the 1930s have recovered unassociated catarrhine postcranial remains from both the fore- and hindlimbs, including multiple elements from the feet. In this study, we describe KNM-SO 31233, a complete left hallucal metatarsal (Mt1), along with several other fragmentary Mt1 specimens (KNM-SO 1080, 5129, 5141, 22235). These fossils were compared to extant catarrhines and platyrrhines, as well as available fossil Miocene catarrhine Mt1s. Morphometric data were obtained from 3D surface renderings and subjected to a number of analyses to assess their phenetic affinity with the comparative sample, make predictions of body mass, and to infer their functional morphology. The size and shape of the Songhor Mt1s are diverse, exhibiting a large robust morph (KNM-SO 5141) similar in size but not in shape to extant African apes, medium-sized morphs (KNM-SO 1080, 5129 and 22235), and a smaller, slender one (KNM-SO 31233) that has a shape resembling arboreal quadrupedal leaping monkeys and suspensory atelines and hylobatids. KNM-SO 31233 is unlike other known fossil Mt1s, and in general, none of the Songhor Mt1s resembled any single extant anthropoid clade or species. The morpho-functional diversity of Songhor Mt1s is consistent with an extensive morphological and phylogenetic catarrhine diversity in the early part of the Miocene epoch.
Assuntos
Catarrinos/anatomia & histologia , Fósseis/anatomia & histologia , Ossos do Metatarso/anatomia & histologia , Animais , Hominidae/anatomia & histologia , Quênia , FilogeniaRESUMO
Over the past century, numerous vertebrate fossils collected near the town of Ramnagar, India, have proven to be important for understanding the evolution and biogeography of many mammalian groups. Primates from Ramnagar, though rare, include a number of hominoid specimens attributable to Sivapithecus, as well as a single published mandibular fragment preserving the P4-M1 of the Miocene adapoid Sivaladapis palaeindicus. Since 2010, we have renewed fossil prospecting in the Lower Siwalik deposits near Ramnagar in an attempt to better understand the evolution, biogeographic timing, and paleoclimatic context of mammalian radiations in Asia, with a particular focus on primates. Our explorations have resulted in the identification of new fossil localities, including the site of Sunetar. The age of Sunetar and the Ramnagar region, in general, is tentatively dated between 14 and 11 Ma. In 2014, a partial right mandible of a sivaladapid primate was recovered at Sunetar, preserving the corpus with P4 roots and worn M1-M3 dentition. Although sivaladapids are known by numerous specimens of two genera (Sivaladapis and Indraloris) at Lower Siwalik sites on the Potwar Plateau (Pakistan) and at the Middle Siwalik locality of Haritalyangar (India), this new specimen is just the second sivaladapid recovered from the Ramnagar region. Our analyses suggest that the new specimen is distinct from all other sivaladapids, and we therefore describe it as a new genus and species close to the base of the Sivaladapinae.
Assuntos
Fósseis/anatomia & histologia , Hominidae/classificação , Mandíbula/anatomia & histologia , Dente/anatomia & histologia , Animais , Evolução Biológica , Índia , Paleodontologia/métodosRESUMO
Australopithecus africanus has been interpreted as having a rigid lateral foot. One mechanism contributing to a rigid foot during push-off in humans is a calcaneocuboid joint (CCJ) with limited dorsiflexion and a "close-packed" talocalcaneal joint (TCJ). In contrast, apes likely have a greater CCJ range of motion and lack a close-packed TCJ. Differences in tarsal arthrokinematics may result in different joint loading environments. In Homo sapiens, we tested the hypothesis that dorsal and plantar CCJ and the TCJ show evidence of predictable habitual loading. In Pan troglodytes, Gorilla gorilla, Gorilla beringei, and Papio ursinus, we tested the hypothesis that only the dorsal CCJ shows evidence of predictable loading. Specifically, we predicted similarity in trabecular properties across the dorsal and plantar CCJ in H. sapiens, but dissimilarity in non-humans. Additionally, we investigated trabecular properties of an A. africanus calcaneus (StW 352) to evaluate joint loading patterns in this hominin and ultimately address the evolution of these properties in H. sapiens. Contrary to predictions, the H. sapiens dorsal CCJ has a significantly higher elongation index, bone volume fraction, trabecular thickness, and trabecular number than the plantar CCJ, while trabecular properties in non-humans do not always differ as predicted between regions. H. sapiens exhibits trabecular morphology indicative of less variable TCJ loading than other groups, having the most anisotropic and rod-like struts oriented in line with predicted principal loads. Multivariate analysis shows that the StW 352 dorsal CCJ matches P. ursinus best, while the plantar CCJ matches G. beringei best and the TCJ matches that of G. gorilla best. Overall patterns suggest that the StW 352 calcaneus experienced more variable loading than H. sapiens, but less variable loading than P. troglodytes, G. gorilla, G. beringei, and P. ursinus, consistent with a large range of foot movements, probably reflecting locomotor kinematics that are unlike those of living humans or apes.
Assuntos
Calcâneo/anatomia & histologia , Osso Esponjoso/anatomia & histologia , Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Articulação Talocalcânea/anatomia & histologia , Animais , Fenômenos Biomecânicos , Feminino , Hominidae/fisiologia , Humanos , Locomoção , Masculino , África do Sul , Especificidade da Espécie , Articulação Talocalcânea/fisiologiaRESUMO
It has long been thought that quadrupedal primates successfully occupy arboreal environments, in part, by relying on their grasping feet to control balance and propulsion, which frees their hands to test unstable branches and forage. If this interlimb decoupling of function is real, there should be discernible differences in forelimb versus hind limb musculoskeletal control, specifically in how manual and pedal digital flexor muscles are recruited to grasp during arboreal locomotion. New electromyography data from extrinsic flexor muscles in red ruffed lemurs (Varecia rubra) walking on a simulated arboreal substrate reveal that toe flexors are activated at relatively higher levels and for longer durations than finger flexors during stance phase. This demonstrates that the extremities of primates indeed have different functional roles during arboreal locomotion, with the feet emphasizing maintenance of secure grips. When this dichotomous muscle activity pattern between the forelimbs and hind limbs is coupled with other features of primate quadrupedal locomotion, including greater hind limb weight support and the use of diagonal-sequence footfall patterns, a complex suite of biomechanical characters emerges in primates that allow for the co-option of hands toward non-locomotor roles. Early selection for limb functional differentiation in primates probably aided the evolution of fine manipulation capabilities in the hands of bipedal humans.
Assuntos
Dedos/fisiologia , Lemuridae/fisiologia , Locomoção , Músculo Esquelético/fisiologia , Dedos do Pé/fisiologia , Árvores , Animais , Evolução Biológica , Eletromiografia , Feminino , TelemetriaRESUMO
Modern human metatarsal heads are typically described as "dorsally domed," mediolaterally wide, and dorsally flat. Despite the apparent functional importance of these features in forefoot stability during bipedalism, the distinctiveness of this morphology has not been quantitatively evaluated within a broad comparative framework. In order to use these features to reconstruct fossil hominin locomotor behaviors with any confidence, their connection to human bipedalism should be validated through a comparative analysis of other primates with different locomotor behaviors and foot postures, including species with biomechanical demands potentially similar to those of bipedalism (e.g., terrestrial digitigrady). This study explores shape variation in the distal metatarsus among humans and other extant catarrhines using three-dimensional geometric morphometrics (3 DGM). Shape differences among species in metatarsal head morphology are well captured by the first two principal components of Procrustes shape coordinates, and these two components summarize most of the variance related to "dorsal doming" and "dorsal expansion." Multivariate statistical tests reveal significant differences among clades in overall shape, and humans are reliably distinguishable from other species by aspects of shape related to a greater degree of dorsal doming. Within quadrupeds, terrestrial species also trend toward more domed metatarsal heads, but not to the extent seen in humans. Certain aspects of distal metatarsus shape are likely related to habitual dorsiflexion of the metatarsophalangeal joints, but the total morphological pattern seen in humans is distinct. These comparative results indicate that this geometric morphometric approach is useful to characterize the complexity of metatarsal head morphology and will help clarify its relationship with function in fossil primates, including early hominins.
Assuntos
Cercopithecidae/anatomia & histologia , Cercopithecidae/fisiologia , Hominidae/anatomia & histologia , Hominidae/fisiologia , Ossos do Metatarso/anatomia & histologia , Ossos do Metatarso/fisiologia , Caminhada/fisiologia , Animais , Evolução Biológica , Fósseis , HumanosRESUMO
A hypertrophied peroneal process of the hallucal metatarsal, as seen in prosimians, has been linked to a powerful hallucal grasp via the contraction of the peroneus longus (PL) muscle causing adduction of the big toe. Electromyography (EMG) studies of lemurs and lorises, however, have concluded that PL is not substantially recruited during small branch locomotion when powerful hallucal grasping is needed most, and have suggested that there is no link between PL activity and peroneal process size. If this is correct, then we should also observe no change in PL activity when strong hallucal grasping is required in anthropoids because they have a relatively smaller peroneal process for PL to act on. This study addresses this hypothesis by evaluating EMG of crural and pedal muscles in capuchins (Sapajus apella) walking on substrates of different diameters. During locomotion on the narrow substrate (3.1 cm) that should elicit a strong hallucal grasp, we observed an intense increased recruitment of adductor hallucis, but only sustained, rather than markedly increased, PL activity. This indicates that PL is not involved in powerful hallucal grasping in capuchins, and confirms similar findings previously documented in prosimians. We continue to reject the hypothesis that a large peroneal process is an adaptation for powerful grasping and further argue that its morphology may not be related to PL's ability to adduct the hallux at all. In addition, the morphology of the peroneal process should not be used to assess hallucal grasping performance in fossils.
Assuntos
Cebus/fisiologia , Pé/fisiologia , Hallux/fisiologia , Força da Mão/fisiologia , Perna (Membro)/fisiologia , Ossos do Metatarso/fisiologia , Animais , Antropologia Física , Eletromiografia , MasculinoRESUMO
Primate evolutionary morphologists have argued that selection for life in a fine branch niche resulted in grasping specializations that are reflected in the hallucal metatarsal (Mt1) morphology of extant "prosimians", while a transition to use of relatively larger, horizontal substrates explains the apparent loss of such characters in anthropoids. Accordingly, these morphological characters-Mt1 torsion, peroneal process length and thickness, and physiological abduction angle-have been used to reconstruct grasping ability and locomotor mode in the earliest fossil primates. Although these characters are prominently featured in debates on the origin and subsequent radiation of Primates, questions remain about their functional significance. This study examines the relationship between these morphological characters of the Mt1 and a novel metric of pedal grasping ability for a large number of extant taxa in a phylogenetic framework. Results indicate greater Mt1 torsion in taxa that engage in hallucal grasping and in those that utilize relatively small substrates more frequently. This study provides evidence that Carpolestes simpsoni has a torsion value more similar to grasping primates than to any scandentian. The results also show that taxa that habitually grasp vertical substrates are distinguished from other taxa in having relatively longer peroneal processes. Furthermore, a longer peroneal process is also correlated with calcaneal elongation, a metric previously found to reflect leaping proclivity. A more refined understanding of the functional associations between Mt1 morphology and behavior in extant primates enhances the potential for using these morphological characters to comprehend primate (locomotor) evolution.