Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 465(7296): 342-5, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20485434

RESUMO

The current and potential future impact of climate change on malaria is of major public health interest. The proposed effects of rising global temperatures on the future spread and intensification of the disease, and on existing malaria morbidity and mortality rates, substantively influence global health policy. The contemporary spatial limits of Plasmodium falciparum malaria and its endemicity within this range, when compared with comparable historical maps, offer unique insights into the changing global epidemiology of malaria over the last century. It has long been known that the range of malaria has contracted through a century of economic development and disease control. Here, for the first time, we quantify this contraction and the global decreases in malaria endemicity since approximately 1900. We compare the magnitude of these changes to the size of effects on malaria endemicity proposed under future climate scenarios and associated with widely used public health interventions. Our findings have two key and often ignored implications with respect to climate change and malaria. First, widespread claims that rising mean temperatures have already led to increases in worldwide malaria morbidity and mortality are largely at odds with observed decreasing global trends in both its endemicity and geographic extent. Second, the proposed future effects of rising temperatures on endemicity are at least one order of magnitude smaller than changes observed since about 1900 and up to two orders of magnitude smaller than those that can be achieved by the effective scale-up of key control measures. Predictions of an intensification of malaria in a warmer world, based on extrapolated empirical relationships or biological mechanisms, must be set against a context of a century of warming that has seen marked global declines in the disease and a substantial weakening of the global correlation between malaria endemicity and climate.


Assuntos
Saúde Global , Aquecimento Global/estatística & dados numéricos , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Animais , Humanos , Malária Falciparum/mortalidade , Malária Falciparum/parasitologia , Plasmodium falciparum/patogenicidade , Plasmodium falciparum/fisiologia , Saúde Pública/estatística & dados numéricos
2.
Lancet ; 381(9861): 142-51, 2013 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-23103089

RESUMO

BACKGROUND: Reliable estimates of populations affected by diseases are necessary to guide efficient allocation of public health resources. Sickle haemoglobin (HbS) is the most common and clinically significant haemoglobin structural variant, but no contemporary estimates exist of the global populations affected. Moreover, the precision of available national estimates of heterozygous (AS) and homozygous (SS) neonates is unknown. We aimed to provide evidence-based estimates at various scales, with uncertainty measures. METHODS: Using a database of sickle haemoglobin surveys, we created a contemporary global map of HbS allele frequency distribution within a Bayesian geostatistical model. The pairing of this map with demographic data enabled calculation of global, regional, and national estimates of the annual number of AS and SS neonates. Subnational estimates were also calculated in data-rich areas. FINDINGS: Our map shows subnational spatial heterogeneities and high allele frequencies across most of sub-Saharan Africa, the Middle East, and India, as well as gene flow following migrations to western Europe and the eastern coast of the Americas. Accounting for local heterogeneities and demographic factors, we estimated that the global number of neonates affected by HbS in 2010 included 5,476,000 (IQR 5,291,000-5,679,000) AS neonates and 312,000 (294,000-330,000) SS neonates. These global estimates are higher than previous conservative estimates. Important differences predicted at the national level are discussed. INTERPRETATION: HbS will have an increasing effect on public health systems. Our estimates can help countries and the international community gauge the need for appropriate diagnoses and genetic counselling to reduce the number of neonates affected. Similar mapping and modelling methods could be used for other inherited disorders. FUNDING: The Wellcome Trust.


Assuntos
Traço Falciforme/epidemiologia , África Subsaariana/epidemiologia , Frequência do Gene , Saúde Global , Hemoglobina Falciforme/genética , Heterozigoto , Homozigoto , Humanos , Recém-Nascido , Dinâmica Populacional
3.
Malar J ; 12: 249, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23866695

RESUMO

BACKGROUND: Plasmodium falciparum has repeatedly evolved resistance to first-line anti-malarial drugs, thwarting efforts to control and eliminate the disease and in some period of time this contributed largely to an increase in mortality. Here a mathematical model was developed to map the spatiotemporal trends in the distribution of mutations in the P. falciparum dihydropteroate synthetase (dhps) gene that confer resistance to the anti-malarial sulphadoxine, and are a useful marker for the combination of alleles in dhfr and dhps that is highly correlated with resistance to sulphadoxine-pyrimethamine (SP). The aim of this study was to present a proof of concept for spatiotemporal modelling of trends in anti-malarial drug resistance that can be applied to monitor trends in resistance to components of artemisinin combination therapy (ACT) or other anti-malarials, as they emerge or spread. METHODS: Prevalence measurements of single nucleotide polymorphisms in three codon positions of the dihydropteroate synthetase (dhps) gene from published studies of dhps mutations across Africa were used. A model-based geostatistics approach was adopted to create predictive surfaces of the dhps540E mutation over the spatial domain of sub-Saharan Africa from 1990-2010. The statistical model was implemented within a Bayesian framework and hence quantified the associated uncertainty of the prediction of the prevalence of the dhps540E mutation in sub-Saharan Africa. CONCLUSIONS: The maps presented visualize the changing prevalence of the dhps540E mutation in sub-Saharan Africa. These allow prediction of space-time trends in the parasite resistance to SP, and provide probability distributions of resistance prevalence in places where no data are available as well as insight on the spread of resistance in a way that the data alone do not allow. The results of this work will be extended to design optimal sampling strategies for the future molecular surveillance of resistance, providing a proof of concept for similar techniques to design optimal strategies to monitor resistance to ACT.


Assuntos
Di-Hidropteroato Sintase/genética , Resistência a Medicamentos , Modelos Teóricos , Mutação de Sentido Incorreto , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , África Subsaariana , Antimaláricos/farmacologia , Geografia , Humanos , Taxa de Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Prevalência , Sulfadoxina/farmacologia
4.
PLoS Med ; 9(11): e1001339, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23152723

RESUMO

BACKGROUND: Primaquine is a key drug for malaria elimination. In addition to being the only drug active against the dormant relapsing forms of Plasmodium vivax, primaquine is the sole effective treatment of infectious P. falciparum gametocytes, and may interrupt transmission and help contain the spread of artemisinin resistance. However, primaquine can trigger haemolysis in patients with a deficiency in glucose-6-phosphate dehydrogenase (G6PDd). Poor information is available about the distribution of individuals at risk of primaquine-induced haemolysis. We present a continuous evidence-based prevalence map of G6PDd and estimates of affected populations, together with a national index of relative haemolytic risk. METHODS AND FINDINGS: Representative community surveys of phenotypic G6PDd prevalence were identified for 1,734 spatially unique sites. These surveys formed the evidence-base for a Bayesian geostatistical model adapted to the gene's X-linked inheritance, which predicted a G6PDd allele frequency map across malaria endemic countries (MECs) and generated population-weighted estimates of affected populations. Highest median prevalence (peaking at 32.5%) was predicted across sub-Saharan Africa and the Arabian Peninsula. Although G6PDd prevalence was generally lower across central and southeast Asia, rarely exceeding 20%, the majority of G6PDd individuals (67.5% median estimate) were from Asian countries. We estimated a G6PDd allele frequency of 8.0% (interquartile range: 7.4-8.8) across MECs, and 5.3% (4.4-6.7) within malaria-eliminating countries. The reliability of the map is contingent on the underlying data informing the model; population heterogeneity can only be represented by the available surveys, and important weaknesses exist in the map across data-sparse regions. Uncertainty metrics are used to quantify some aspects of these limitations in the map. Finally, we assembled a database of G6PDd variant occurrences to inform a national-level index of relative G6PDd haemolytic risk. Asian countries, where variants were most severe, had the highest relative risks from G6PDd. CONCLUSIONS: G6PDd is widespread and spatially heterogeneous across most MECs where primaquine would be valuable for malaria control and elimination. The maps and population estimates presented here reflect potential risk of primaquine-associated harm. In the absence of non-toxic alternatives to primaquine, these results represent additional evidence to help inform safe use of this valuable, yet dangerous, component of the malaria-elimination toolkit. Please see later in the article for the Editors' Summary.


Assuntos
Antimaláricos/toxicidade , Frequência do Gene , Geografia Médica/métodos , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Glucosefosfato Desidrogenase/genética , Hemólise , Primaquina/toxicidade , Teorema de Bayes , Feminino , Mapeamento Geográfico , Glucosefosfato Desidrogenase/metabolismo , Humanos , Malária/epidemiologia , Masculino , Modelos Genéticos , Prevalência , Medição de Risco , Distribuição por Sexo
5.
PLoS Comput Biol ; 6(4): e1000724, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20369009

RESUMO

Risk maps estimating the spatial distribution of infectious diseases are required to guide public health policy from local to global scales. The advent of model-based geostatistics (MBG) has allowed these maps to be generated in a formal statistical framework, providing robust metrics of map uncertainty that enhances their utility for decision-makers. In many settings, decision-makers require spatially aggregated measures over large regions such as the mean prevalence within a country or administrative region, or national populations living under different levels of risk. Existing MBG mapping approaches provide suitable metrics of local uncertainty--the fidelity of predictions at each mapped pixel--but have not been adapted for measuring uncertainty over large areas, due largely to a series of fundamental computational constraints. Here the authors present a new efficient approximating algorithm that can generate for the first time the necessary joint simulation of prevalence values across the very large prediction spaces needed for global scale mapping. This new approach is implemented in conjunction with an established model for P. falciparum allowing robust estimates of mean prevalence at any specified level of spatial aggregation. The model is used to provide estimates of national populations at risk under three policy-relevant prevalence thresholds, along with accompanying model-based measures of uncertainty. By overcoming previously unchallenged computational barriers, this study illustrates how MBG approaches, already at the forefront of infectious disease mapping, can be extended to provide large-scale aggregate measures appropriate for decision-makers.


Assuntos
Biologia Computacional/métodos , Malária Falciparum/epidemiologia , Modelos Biológicos , Plasmodium falciparum , Topografia Médica/métodos , Algoritmos , Simulação por Computador , Humanos , Prevalência , Reprodutibilidade dos Testes , Risco
6.
Malar J ; 10: 378, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22185615

RESUMO

BACKGROUND: Transmission intensity affects almost all aspects of malaria epidemiology and the impact of malaria on human populations. Maps of transmission intensity are necessary to identify populations at different levels of risk and to evaluate objectively options for disease control. To remain relevant operationally, such maps must be updated frequently. Following the first global effort to map Plasmodium falciparum malaria endemicity in 2007, this paper describes the generation of a new world map for the year 2010. This analysis is extended to provide the first global estimates of two other metrics of transmission intensity for P. falciparum that underpin contemporary questions in malaria control: the entomological inoculation rate (PfEIR) and the basic reproductive number (PfR). METHODS: Annual parasite incidence data for 13,449 administrative units in 43 endemic countries were sourced to define the spatial limits of P. falciparum transmission in 2010 and 22,212 P. falciparum parasite rate (PfPR) surveys were used in a model-based geostatistical (MBG) prediction to create a continuous contemporary surface of malaria endemicity within these limits. A suite of transmission models were developed that link PfPR to PfEIR and PfR and these were fitted to field data. These models were combined with the PfPR map to create new global predictions of PfEIR and PfR. All output maps included measured uncertainty. RESULTS: An estimated 1.13 and 1.44 billion people worldwide were at risk of unstable and stable P. falciparum malaria, respectively. The majority of the endemic world was predicted with a median PfEIR of less than one and a median PfRc of less than two. Values of either metric exceeding 10 were almost exclusive to Africa. The uncertainty described in both PfEIR and PfR was substantial in regions of intense transmission. CONCLUSIONS: The year 2010 has a particular significance as an evaluation milestone for malaria global health policy. The maps presented here contribute to a rational basis for control and elimination decisions and can serve as a baseline assessment as the global health community looks ahead to the next series of milestones targeted at 2015.


Assuntos
Doenças Endêmicas/estatística & dados numéricos , Malária Falciparum/epidemiologia , Mapas como Assunto , Plasmodium falciparum/patogenicidade , Algoritmos , Teorema de Bayes , Biologia Computacional , Bases de Dados Factuais , Doenças Endêmicas/prevenção & controle , Saúde Global , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Modelos Estatísticos , Fatores de Risco
7.
PLoS Med ; 7(6): e1000290, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20563310

RESUMO

BACKGROUND: The epidemiology of malaria makes surveillance-based methods of estimating its disease burden problematic. Cartographic approaches have provided alternative malaria burden estimates, but there remains widespread misunderstanding about their derivation and fidelity. The aims of this study are to present a new cartographic technique and its application for deriving global clinical burden estimates of Plasmodium falciparum malaria for 2007, and to compare these estimates and their likely precision with those derived under existing surveillance-based approaches. METHODS AND FINDINGS: In seven of the 87 countries endemic for P. falciparum malaria, the health reporting infrastructure was deemed sufficiently rigorous for case reports to be used verbatim. In the remaining countries, the mapped extent of unstable and stable P. falciparum malaria transmission was first determined. Estimates of the plausible incidence range of clinical cases were then calculated within the spatial limits of unstable transmission. A modelled relationship between clinical incidence and prevalence was used, together with new maps of P. falciparum malaria endemicity, to estimate incidence in areas of stable transmission, and geostatistical joint simulation was used to quantify uncertainty in these estimates at national, regional, and global scales. Combining these estimates for all areas of transmission risk resulted in 451 million (95% credible interval 349-552 million) clinical cases of P. falciparum malaria in 2007. Almost all of this burden of morbidity occurred in areas of stable transmission. More than half of all estimated P. falciparum clinical cases and associated uncertainty occurred in India, Nigeria, the Democratic Republic of the Congo (DRC), and Myanmar (Burma), where 1.405 billion people are at risk. Recent surveillance-based methods of burden estimation were then reviewed and discrepancies in national estimates explored. When these cartographically derived national estimates were ranked according to their relative uncertainty and replaced by surveillance-based estimates in the least certain half, 98% of the global clinical burden continued to be estimated by cartographic techniques. CONCLUSIONS AND SIGNIFICANCE: Cartographic approaches to burden estimation provide a globally consistent measure of malaria morbidity of known fidelity, and they represent the only plausible method in those malaria-endemic countries with nonfunctional national surveillance. Unacceptable uncertainty in the clinical burden of malaria in only four countries confounds our ability to evaluate needs and monitor progress toward international targets for malaria control at the global scale. National prevalence surveys in each nation would reduce this uncertainty profoundly. Opportunities for further reducing uncertainty in clinical burden estimates by hybridizing alternative burden estimation procedures are also evaluated.


Assuntos
Doenças Endêmicas , Saúde Global , Malária Falciparum/epidemiologia , Modelos Biológicos , Vigilância da População/métodos , Doenças Endêmicas/estatística & dados numéricos , Humanos , Incidência , Malária Falciparum/transmissão , Prevalência , Reprodutibilidade dos Testes , Incerteza
8.
PLoS Med ; 6(3): e1000048, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19323591

RESUMO

BACKGROUND: Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. METHODS AND FINDINGS: A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2-10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2-10 < or = 5%). The vast majority (88%) of those living under stable risk in CSE Asia were also in this low endemicity class; a small remainder (11%) were in the intermediate endemicity class (PfPR2-10 > 5 to < 40%); and the remaining fraction (1%) in high endemicity (PfPR2-10 > or = 40%) areas. High endemicity was widespread in the Africa+ region, where 0.35 billion people are at this level of risk. Most of the rest live at intermediate risk (0.20 billion), with a smaller number (0.11 billion) at low stable risk. CONCLUSIONS: High levels of P. falciparum malaria endemicity are common in Africa. Uniformly low endemic levels are found in the Americas. Low endemicity is also widespread in CSE Asia, but pockets of intermediate and very rarely high transmission remain. There are therefore significant opportunities for malaria control in Africa and for malaria elimination elsewhere. This 2007 global P. falciparum malaria endemicity map is the first of a series with which it will be possible to monitor and evaluate the progress of this intervention process.


Assuntos
Doenças Endêmicas/estatística & dados numéricos , Malária Falciparum/epidemiologia , Mapas como Assunto , África/epidemiologia , América/epidemiologia , Animais , Ásia/epidemiologia , Clima , Bases de Dados Factuais , Saúde Global , Inquéritos Epidemiológicos , Humanos , Malária Falciparum/parasitologia , Modelos Teóricos , Plasmodium falciparum/isolamento & purificação , Prevalência , Risco
9.
Malar J ; 8: 186, 2009 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-19656373

RESUMO

BACKGROUND: Clinical malaria has proven an elusive burden to enumerate. Many cases go undetected by routine disease recording systems. Epidemiologists have, therefore, frequently defaulted to actively measuring malaria in population cohorts through time. Measuring the clinical incidence of malaria longitudinally is labour-intensive and impossible to undertake universally. There is a need, therefore, to define a relationship between clinical incidence and the easier and more commonly measured index of infection prevalence: the "parasite rate". This relationship can help provide an informed basis to define malaria burdens in areas where health statistics are inadequate. METHODS: Formal literature searches were conducted for Plasmodium falciparum malaria incidence surveys undertaken prospectively through active case detection at least every 14 days. The data were abstracted, standardized and geo-referenced. Incidence surveys were time-space matched with modelled estimates of infection prevalence derived from a larger database of parasite prevalence surveys and modelling procedures developed for a global malaria endemicity map. Several potential relationships between clinical incidence and infection prevalence were then specified in a non-parametric Gaussian process model with minimal, biologically informed, prior constraints. Bayesian inference was then used to choose between the candidate models. RESULTS: The suggested relationships with credible intervals are shown for the Africa and a combined America and Central and South East Asia regions. In both regions clinical incidence increased slowly and smoothly as a function of infection prevalence. In Africa, when infection prevalence exceeded 40%, clinical incidence reached a plateau of 500 cases per thousand of the population per annum. In the combined America and Central and South East Asia regions, this plateau was reached at 250 cases per thousand of the population per annum. A temporal volatility model was also incorporated to facilitate a closer description of the variance in the observed data. CONCLUSION: It was possible to model a relationship between clinical incidence and P. falciparum infection prevalence but the best-fit models were very noisy reflecting the large variance within the observed opportunistic data sample. This continuous quantification allows for estimates of the clinical burden of P. falciparum of known confidence from wherever an estimate of P. falciparum prevalence is available.


Assuntos
Doenças Endêmicas/estatística & dados numéricos , Malária Falciparum/epidemiologia , Modelos Estatísticos , Animais , Efeitos Psicossociais da Doença , Bases de Dados Factuais , Humanos , Incidência , Malária Falciparum/parasitologia , Modelos Biológicos , Distribuição Normal , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/patogenicidade , Prevalência
10.
BMC Infect Dis ; 9: 180, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19930552

RESUMO

BACKGROUND: To design an effective strategy for the control of malaria requires a map of infection and disease risks to select appropriate suites of interventions. Advances in model based geo-statistics and malaria parasite prevalence data assemblies provide unique opportunities to redefine national Plasmodium falciparum risk distributions. Here we present a new map of malaria risk for Kenya in 2009. METHODS: Plasmodium falciparum parasite rate data were assembled from cross-sectional community based surveys undertaken from 1975 to 2009. Details recorded for each survey included the month and year of the survey, sample size, positivity and the age ranges of sampled population. Data were corrected to a standard age-range of two to less than 10 years (PfPR2-10) and each survey location was geo-positioned using national and on-line digital settlement maps. Ecological and climate covariates were matched to each PfPR2-10 survey location and examined separately and in combination for relationships to PfPR2-10. Significant covariates were then included in a Bayesian geostatistical spatial-temporal framework to predict continuous and categorical maps of mean PfPR2-10 at a 1 x 1 km resolution across Kenya for the year 2009. Model hold-out data were used to test the predictive accuracy of the mapped surfaces and distributions of the posterior uncertainty were mapped. RESULTS: A total of 2,682 estimates of PfPR2-10 from surveys undertaken at 2,095 sites between 1975 and 2009 were selected for inclusion in the geo-statistical modeling. The covariates selected for prediction were urbanization; maximum temperature; precipitation; enhanced vegetation index; and distance to main water bodies. The final Bayesian geo-statistical model had a high predictive accuracy with mean error of -0.15% PfPR2-10; mean absolute error of 0.38% PfPR2-10; and linear correlation between observed and predicted PfPR2-10 of 0.81. The majority of Kenya's 2009 population (35.2 million, 86.3%) reside in areas where predicted PfPR2-10 is less than 5%; conversely in 2009 only 4.3 million people (10.6%) lived in areas where PfPR2-10 was predicted to be > or =40% and were largely located around the shores of Lake Victoria. CONCLUSION: Model based geo-statistical methods can be used to interpolate malaria risks in Kenya with precision and our model shows that the majority of Kenyans live in areas of very low P. falciparum risk. As malaria interventions go to scale effectively tracking epidemiological changes of risk demands a rigorous effort to document infection prevalence in time and space to remodel risks and redefine intervention priorities over the next 10-15 years.


Assuntos
Malária Falciparum/epidemiologia , Modelos Estatísticos , Teorema de Bayes , Clima , Estudos Transversais , Ecossistema , Geografia , Humanos , Quênia/epidemiologia , Plasmodium falciparum , Prevalência , Medição de Risco , Conglomerados Espaço-Temporais
12.
Sci Rep ; 3: 1671, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23591685

RESUMO

Haemoglobin C (HbC) is one of the commonest structural haemoglobin variants in human populations. Although HbC causes mild clinical complications, its diagnosis and genetic counselling are important to prevent inheritance with other haemoglobinopathies. Little is known about its contemporary distribution and the number of newborns affected. We assembled a global database of population surveys. We then used a Bayesian geostatistical model to create maps of HbC frequency across Africa and paired our predictions with high-resolution demographics to calculate heterozygous (AC) and homozygous (CC) newborn estimates and their associated uncertainty. Data were too sparse outside Africa for this methodology to be applied. The highest frequencies were found in West Africa but HbC was commonly found in other parts of the continent. The expected annual numbers of AC and CC newborns in Africa were 672,117 (interquartile range (IQR): 642,116-705,163) and 28,703 (IQR: 26,027-31,958), respectively. These numbers are about two times previous estimates.


Assuntos
Doença da Hemoglobina C/sangue , Doença da Hemoglobina C/epidemiologia , Hemoglobina C/análise , Modelos de Riscos Proporcionais , África/epidemiologia , Feminino , Humanos , Recém-Nascido , Masculino , Prevalência , Fatores de Risco
13.
Am J Trop Med Hyg ; 87(6): 1012-1021, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23033400

RESUMO

Evidence shows that malaria risk maps are rarely tailored to address national control program ambitions. Here, we generate a malaria risk map adapted for malaria control in Sudan. Community Plasmodium falciparum parasite rate (PfPR) data from 2000 to 2010 were assembled and were standardized to 2-10 years of age (PfPR(2-10)). Space-time Bayesian geostatistical methods were used to generate a map of malaria risk for 2010. Surfaces of aridity, urbanization, irrigation schemes, and refugee camps were combined with the PfPR(2-10) map to tailor the epidemiological stratification for appropriate intervention design. In 2010, a majority of the geographical area of the Sudan had risk of < 1% PfPR(2-10). Areas of meso- and hyperendemic risk were located in the south. About 80% of Sudan's population in 2011 was in the areas in the desert, urban centers, or where risk was < 1% PfPR(2-10). Aggregated data suggest reducing risks in some high transmission areas since the 1960s.


Assuntos
Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Teorema de Bayes , Demografia , Humanos , Fatores de Risco , Sudão/epidemiologia
14.
PLoS One ; 7(5): e37325, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615978

RESUMO

BACKGROUND: Plasmodium vivax imposes substantial morbidity and mortality burdens in endemic zones. Detailed understanding of the contemporary spatial distribution of this parasite is needed to combat it. We used model based geostatistics (MBG) techniques to generate a contemporary map of risk of Plasmodium vivax malaria in Indonesia in 2010. METHODS: Plasmodium vivax Annual Parasite Incidence data (2006-2008) and temperature masks were used to map P. vivax transmission limits. A total of 4,658 community surveys of P. vivax parasite rate (PvPR) were identified (1985-2010) for mapping quantitative estimates of contemporary endemicity within those limits. After error-checking a total of 4,457 points were included into a national database of age-standardized 1-99 year old PvPR data. A Bayesian MBG procedure created a predicted PvPR(1-99) endemicity surface with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population surface. RESULTS: We estimated 129.6 million people in Indonesia lived at risk of P. vivax transmission in 2010. Among these, 79.3% inhabited unstable transmission areas and 20.7% resided in stable transmission areas. In western Indonesia, the predicted P. vivax prevalence was uniformly low. Over 70% of the population at risk in this region lived on Java and Bali islands, where little malaria transmission occurs. High predicted prevalence areas were observed in the Lesser Sundas, Maluku and Papua. In general, prediction uncertainty was relatively low in the west and high in the east. CONCLUSION: Most Indonesians living with endemic P. vivax experience relatively low risk of infection. However, blood surveys for this parasite are likely relatively insensitive and certainly do not detect the dormant liver stage reservoir of infection. The prospects for P. vivax elimination would be improved with deeper understanding of glucose-6-phosphate dehydrogenase deficiency (G6PDd) distribution, anti-relapse therapy practices and manageability of P. vivax importation risk, especially in Java and Bali.


Assuntos
Doenças Endêmicas/estatística & dados numéricos , Malária Vivax/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Criança , Pré-Escolar , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Humanos , Indonésia/epidemiologia , Lactente , Malária Vivax/transmissão , Pessoa de Meia-Idade , Morbidade , Prevalência
15.
Parasit Vectors ; 5: 69, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22475528

RESUMO

BACKGROUND: Global maps, in particular those based on vector distributions, have long been used to help visualise the global extent of malaria. Few, however, have been created with the support of a comprehensive and extensive evidence-based approach. METHODS: Here we describe the generation of a global map of the dominant vector species (DVS) of malaria that makes use of predicted distribution maps for individual species or species complexes. RESULTS: Our global map highlights the spatial variability in the complexity of the vector situation. In Africa, An. gambiae, An. arabiensis and An. funestus are co-dominant across much of the continent, whereas in the Asian-Pacific region there is a highly complex situation with multi-species coexistence and variable species dominance. CONCLUSIONS: The competence of the mapping methodology to accurately portray DVS distributions is discussed. The comprehensive and contemporary database of species-specific spatial occurrence (currently available on request) will be made directly available via the Malaria Atlas Project (MAP) website from early 2012.


Assuntos
Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Vetores de Doenças , Malária/transmissão , Filogeografia , África , Animais , Anopheles/parasitologia , Saúde Global , Humanos
16.
PLoS Negl Trop Dis ; 6(9): e1814, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970336

RESUMO

BACKGROUND: Current understanding of the spatial epidemiology and geographical distribution of Plasmodium vivax is far less developed than that for P. falciparum, representing a barrier to rational strategies for control and elimination. Here we present the first systematic effort to map the global endemicity of this hitherto neglected parasite. METHODOLOGY AND FINDINGS: We first updated to the year 2010 our earlier estimate of the geographical limits of P. vivax transmission. Within areas of stable transmission, an assembly of 9,970 geopositioned P. vivax parasite rate (PvPR) surveys collected from 1985 to 2010 were used with a spatiotemporal Bayesian model-based geostatistical approach to estimate endemicity age-standardised to the 1-99 year age range (PvPR(1-99)) within every 5×5 km resolution grid square. The model incorporated data on Duffy negative phenotype frequency to suppress endemicity predictions, particularly in Africa. Endemicity was predicted within a relatively narrow range throughout the endemic world, with the point estimate rarely exceeding 7% PvPR(1-99). The Americas contributed 22% of the global area at risk of P. vivax transmission, but high endemic areas were generally sparsely populated and the region contributed only 6% of the 2.5 billion people at risk (PAR) globally. In Africa, Duffy negativity meant stable transmission was constrained to Madagascar and parts of the Horn, contributing 3.5% of global PAR. Central Asia was home to 82% of global PAR with important high endemic areas coinciding with dense populations particularly in India and Myanmar. South East Asia contained areas of the highest endemicity in Indonesia and Papua New Guinea and contributed 9% of global PAR. CONCLUSIONS AND SIGNIFICANCE: This detailed depiction of spatially varying endemicity is intended to contribute to a much-needed paradigm shift towards geographically stratified and evidence-based planning for P. vivax control and elimination.


Assuntos
Doenças Endêmicas , Malária Vivax/epidemiologia , Plasmodium vivax/isolamento & purificação , Topografia Médica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Saúde Global , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Trends Parasitol ; 27(6): 246-53, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21420361

RESUMO

Maps of parasite prevalences and other aspects of infectious diseases that vary in space are widely used in parasitology. However, spatial parasitological datasets rarely, if ever, have sufficient coverage to allow exact determination of such maps. Bayesian geostatistics (BG) is a method for finding a large sample of maps that can explain a dataset, in which maps that do a better job of explaining the data are more likely to be represented. This sample represents the knowledge that the analyst has gained from the data about the unknown true map. BG provides a conceptually simple way to convert these samples to predictions of features of the unknown map, for example regional averages. These predictions account for each map in the sample, yielding an appropriate level of predictive precision.


Assuntos
Teorema de Bayes , Malária Falciparum/epidemiologia , Densidade Demográfica , África/epidemiologia , Funções Verossimilhança , Malária Falciparum/transmissão , Prevalência , Saúde Pública/estatística & dados numéricos
18.
Adv Parasitol ; 74: 267-96, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21295680

RESUMO

Funding agencies are dedicating substantial resources to tackle helminth infections. Reliable maps of the distribution of helminth infection can assist these efforts by targeting control resources to areas of greatest need. The ability to define the distribution of infection at regional, national and subnational levels has been enhanced greatly by the increased availability of good quality survey data and the use of model-based geostatistics (MBG), enabling spatial prediction in unsampled locations. A major advantage of MBG risk mapping approaches is that they provide a flexible statistical platform for handling and representing different sources of uncertainty, providing plausible and robust information on the spatial distribution of infections to inform the design and implementation of control programmes. Focussing on schistosomiasis and soil-transmitted helminthiasis, with additional examples for lymphatic filariasis and onchocerciasis, we review the progress made to date with the application of MBG tools in large-scale, real-world control programmes and propose a general framework for their application to inform integrative spatial planning of helminth disease control programmes.


Assuntos
Controle de Doenças Transmissíveis , Helmintíase/epidemiologia , Helmintos/fisiologia , Modelos Estatísticos , Animais , Helmintíase/prevenção & controle , Prevalência
19.
Sci Rep ; 1: 93, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355611

RESUMO

The prevalence of Plasmodium falciparum malaria in Zanzibar has reached historic lows. Improving control requires quantifying malaria importation rates, identifying high-risk travelers, and assessing onwards transmission.Estimates of Zanzibar's importation rate were calculated through two independent methodologies. First, mobile phone usage data and ferry traffic between Zanzibar and mainland Tanzania were re-analyzed using a model of heterogeneous travel risk. Second, a dynamic mathematical model of importation and transmission rates was used.Zanzibar residents traveling to malaria endemic regions were estimated to contribute 1-15 times more imported cases than infected visitors. The malaria importation rate was estimated to be 1.6 incoming infections per 1,000 inhabitants per year. Local transmission was estimated too low to sustain transmission in most places.Malaria infections in Zanzibar largely result from imported malaria and subsequent transmission. Plasmodium falciparum malaria elimination appears feasible by implementing control measures based on detecting imported malaria cases and controlling onward transmission.


Assuntos
Malária Falciparum/epidemiologia , Viagem , Humanos , Malária Falciparum/transmissão , Fatores de Risco , Tanzânia/epidemiologia
20.
Parasit Vectors ; 4: 92, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21615906

RESUMO

BACKGROUND: Temperature is a key determinant of environmental suitability for transmission of human malaria, modulating endemicity in some regions and preventing transmission in others. The spatial modelling of malaria endemicity has become increasingly sophisticated and is now central to the global scale planning, implementation, and monitoring of disease control and regional efforts towards elimination, but existing efforts to model the constraints of temperature on the malaria landscape at these scales have been simplistic. Here, we define an analytical framework to model these constraints appropriately at fine spatial and temporal resolutions, providing a detailed dynamic description that can enhance large scale malaria cartography as a decision-support tool in public health. RESULTS: We defined a dynamic biological model that incorporated the principal mechanisms of temperature dependency in the malaria transmission cycle and used it with fine spatial and temporal resolution temperature data to evaluate time-series of temperature suitability for transmission of Plasmodium falciparum and P. vivax throughout an average year, quantified using an index proportional to the basic reproductive number. Time-series were calculated for all 1 km resolution land pixels globally and were summarised to create high-resolution maps for each species delineating those regions where temperature precludes transmission throughout the year. Within suitable zones we mapped for each pixel the number of days in which transmission is possible and an integrated measure of the intensity of suitability across the year. The detailed evaluation of temporal suitability dynamics provided by the model is visualised in a series of accompanying animations. CONCLUSIONS: These modelled products, made available freely in the public domain, can support the refined delineation of populations at risk; enhance endemicity mapping by offering a detailed, dynamic, and biologically driven alternative to the ubiquitous empirical incorporation of raw temperature data in geospatial models; and provide a rich spatial and temporal platform for future biological modelling studies.


Assuntos
Malária Falciparum/transmissão , Malária Vivax/transmissão , Plasmodium falciparum/patogenicidade , Plasmodium vivax/patogenicidade , Clima , Meio Ambiente , Geografia , Humanos , Modelos Estatísticos , Plasmodium falciparum/efeitos da radiação , Plasmodium vivax/efeitos da radiação , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA