Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Clin Chem Lab Med ; 61(2): 302-310, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36395058

RESUMO

OBJECTIVES: During 2020, the UK's Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity. METHODS: Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study. RESULTS: Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7-39.1) demonstrated diagnostic sensitivity of 92.4% (87.4-95.5), specificity of 97.4% (94.0-98.9) and near total concordance with RT-qPCR (Cohen's Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1-99.3), specificity 97.4% (94.0-98.9) and Cohen's Kappa 0.95. CONCLUSIONS: This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , COVID-19/diagnóstico , Teste para COVID-19 , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Estudos Prospectivos , Técnicas de Laboratório Clínico/métodos , Sensibilidade e Especificidade , Peptídeos
2.
Elife ; 102021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34747696

RESUMO

Reliable, robust, large-scale molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for monitoring the ongoing coronavirus disease 2019 (COVID-19) pandemic. We have developed a scalable analytical approach to detect viral proteins based on peptide immuno-affinity enrichment combined with liquid chromatography-mass spectrometry (LC-MS). This is a multiplexed strategy, based on targeted proteomics analysis and read-out by LC-MS, capable of precisely quantifying and confirming the presence of SARS-CoV-2 in phosphate-buffered saline (PBS) swab media from combined throat/nasopharynx/saliva samples. The results reveal that the levels of SARS-CoV-2 measured by LC-MS correlate well with their correspondingreal-time polymerase chain reaction (RT-PCR) read-out (r = 0.79). The analytical workflow shows similar turnaround times as regular RT-PCR instrumentation with a quantitative read-out of viral proteins corresponding to cycle thresholds (Ct) equivalents ranging from 21 to 34. Using RT-PCR as a reference, we demonstrate that the LC-MS-based method has 100% negative percent agreement (estimated specificity) and 95% positive percent agreement (estimated sensitivity) when analyzing clinical samples collected from asymptomatic individuals with a Ct within the limit of detection of the mass spectrometer (Ct ≤ 30). These results suggest that a scalable analytical method based on LC-MS has a place in future pandemic preparedness centers to complement current virus detection technologies.


Assuntos
COVID-19/diagnóstico , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Técnicas de Diagnóstico Molecular/métodos , Proteínas Virais/análise , COVID-19/virologia , Humanos , Modelos Lineares , Nasofaringe/virologia , Fragmentos de Peptídeos/análise , Proteômica , Reprodutibilidade dos Testes , SARS-CoV-2/química , Sensibilidade e Especificidade
3.
Appl Environ Microbiol ; 75(3): 779-83, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19047378

RESUMO

In many countries relatively high notification rates of campylobacteriosis are observed in children under 5 years of age. Few studies have considered the role that environmental exposure plays in the epidemiology of these cases. Wild birds inhabit parks and playgrounds and are recognized carriers of Campylobacter, and young children are at greater risk of ingesting infective material due to their frequent hand-mouth contact. We investigated wild-bird fecal contamination in playgrounds in parks in a New Zealand city. A total of 192 samples of fresh and dried fecal material were cultured to determine the presence of Campylobacter spp. Campylobacter jejuni isolates were also characterized by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST), and the profiles obtained were compared with those of human isolates. C. jejuni was isolated from 12.5% of the samples. MLST identified members of clonal complexes ST-45, ST-682, and ST-177; all of these complexes have been recovered from wild birds in Europe. PFGE of ST-45 isolates resulted in profiles indistinguishable from those of isolated obtained from human cases in New Zealand. Members of the ST-177 and ST-682 complexes have been found in starlings (Sturnus vulgaris) in the United Kingdom, and these birds were common in playgrounds investigated in New Zealand in this study. We suggest that feces from wild birds in playgrounds could contribute to the occurrence of campylobacteriosis in preschool children. Further, the C. jejuni isolates obtained in this study belonged to clonal complexes associated with wild-bird populations in the northern hemisphere and could have been introduced into New Zealand in imported wild garden birds in the 19th century.


Assuntos
Infecções por Campylobacter/veterinária , Campylobacter/classificação , Campylobacter/isolamento & purificação , Portador Sadio/microbiologia , Reservatórios de Doenças/veterinária , Fezes/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Aves , Campylobacter/genética , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Reservatórios de Doenças/microbiologia , Eletroforese em Gel de Campo Pulsado , Genótipo , Humanos , Epidemiologia Molecular , Nova Zelândia , Análise de Sequência de DNA
4.
Vet Microbiol ; 122(1-2): 178-84, 2007 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-17250977

RESUMO

The 2001/2002 and 2002/2003 breeding seasons of New Zealand sea lions (NZSLs) on the Auckland Islands were marked by a high pup mortality caused by acute bacterial infections. As part of a health survey from 1998/1999 to 2004/2005, tissues and swabs of lesions had been collected at necropsy to identify the bacteria associated with pup mortality. Klebsiella pneumoniae was grown in pure culture from 83% of various organs and lesions in 2001/2002 and 76% in 2002/2003, and less frequently in the following seasons (56% in 2003/2004 and 49% in 2004/2005). Pup isolates of K. pneumoniae showed identical minimal inhibitory concentrations (MIC) of cefuroxime, neomycin, cephalotin, cephalexin and dihydrostreptomycin, suggesting clonal aetiology of the pathogen. Isolates also tested negative for production of extended-spectrum beta-lactamases (ESBLs), which was not in favour of an anthropogenetic origin of the epidemic strain. Pulsed-field gel electrophoresis (PFGE) of XbaI DNA macrorestriction fragments was performed on isolates of K. pneumoniae and Klebsiella oxytoca from 35 pups, thee NZSL adult females, and from three human patients for comparison. PFGE showed that pup isolates of K. pneumoniae were genetically indistinguishable but were neither related to K. pneumoniae from humans and from NZSL adults, nor to K. oxytoca from NZSLs. It is concluded that the 2001/2002 and 2002/2003 epidemics at Sandy Bay rookery were caused by a single K. pneumoniae clonal lineage, genetically different from the strain carried by adult NZSLs. An anthropogenic origin of the K. pneumoniae clone could not be confirmed, but further investigations are required to rule-out such occurrence.


Assuntos
Doenças dos Animais/microbiologia , Surtos de Doenças/veterinária , Infecções por Klebsiella/veterinária , Klebsiella pneumoniae/genética , Leões-Marinhos/microbiologia , Doenças dos Animais/epidemiologia , Animais , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Nova Zelândia/epidemiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA