Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Microbiol ; 56(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29514939

RESUMO

Discrimination of highly pathogenic bacteria, such as Bacillus anthracis, from closely related species based on molecular biological methods is challenging. We applied matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to a collection of B. anthracis strains and close relatives in order to significantly improve the statistical confidence of identification results for this group of bacteria. Protein mass spectra of 189 verified and diverse Bacillus strains of the Bacillus cereus sensu lato group were generated using MALDI-TOF MS and subsequently analyzed with supervised and unsupervised statistical methods, such as shrinkage discriminant analysis (SDA) and principal-component analysis (PCA). We aimed at identifying specific biomarkers in the protein spectra of B. anthracis not present in closely related Bacillus species. We could identify 7, 10, 18, and 14 B. anthracis-specific biomarker candidates that were absent in B. cereus, B. mycoides, B. thuringiensis, and B. weihenstephanensis strains, respectively. Main spectra (MSP) of a defined collection of Bacillus strains were compiled using the Bruker Biotyper software and added to an in-house reference library. Reevaluation of this library with 15 hitherto untested strains of B. anthracis and B. cereus yielded improved score values. The B. anthracis strains were identified with score values between 2.33 and 2.55 using the in-house database, while the same strains were identified with scores between 1.94 and 2.37 using the commercial database, and no false-positive identifications occurred using the in-house database.


Assuntos
Bacillus anthracis/classificação , Bacillus cereus/classificação , Proteínas de Bactérias/análise , Técnicas de Tipagem Bacteriana/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Bacillus/química , Bacillus/classificação , Bacillus/isolamento & purificação , Bacillus anthracis/química , Bacillus anthracis/isolamento & purificação , Bacillus cereus/química , Bacillus cereus/isolamento & purificação , Biomarcadores/análise , Análise por Conglomerados , Bases de Dados Factuais , Análise de Componente Principal
2.
Front Bioeng Biotechnol ; 10: 1021827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466340

RESUMO

Infective/bacterial endocarditis is a rare but life-threatening disease with a hospital mortality rate of 22.7% and a 1-year mortality rate of 40%. Therefore, continued research efforts to develop efficient anti-infective implant materials are of the utmost importance. Equally important is the development of test systems that allow the performance of new materials to be comprehensively evaluated. In this study, a novel antibacterial coating based on dalbavancin was tested in comparison to rifampicin/minocycline, and the suitability of a recently developed mouse tail vein model for testing the implant coatings was validated. Small polymeric stent grafts coated with a poly-L-lactic acid (PLLA) layer and incorporated antibiotics were colonized with Staphylococcus (S.) aureus before implantation into the tail vein of mice. The main assessment criteria were the hematogenous spread of the bacteria and the local tissue reaction to the contaminated implant. For this purpose, colony-forming units (CFU) in the blood, spleen and kidneys were determined. Tail cross sections were prepared for histological analysis, and plasma cytokine levels and expression values of inflammation-associated genes were examined. Both antibiotic coatings performed excellently, preventing the onset of infection. The present study expands the range of available methods for testing the anti-infectivity of cardiovascular implants, and the spectrum of agents for effective surface coating.

3.
Viruses ; 11(3)2019 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884829

RESUMO

Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that infects chickens and poses a serious threat to poultry health. In infected animals, MDV efficiently replicates in B cells in various lymphoid organs. Despite many years of research, the viral transcriptome in primary target cells of MDV remained unknown. In this study, we uncovered the transcriptional landscape of the very virulent RB1B strain and the attenuated CVI988/Rispens vaccine strain in primary chicken B cells using high-throughput RNA-sequencing. Our data confirmed the expression of known genes, but also identified a novel spliced MDV gene in the unique short region of the genome. Furthermore, de novo transcriptome assembly revealed extensive splicing of viral genes resulting in coding and non-coding RNA transcripts. A novel splicing isoform of MDV UL15 could also be confirmed by mass spectrometry and RT-PCR. In addition, we could demonstrate that the associated transcriptional motifs are highly conserved and closely resembled those of the host transcriptional machinery. Taken together, our data allow a comprehensive re-annotation of the MDV genome with novel genes and splice variants that could be targeted in further research on MDV replication and tumorigenesis.


Assuntos
Linfócitos B/virologia , Genes Virais , Herpesvirus Galináceo 2/genética , Doença de Marek/virologia , Isoformas de Proteínas/genética , Transcriptoma , Animais , Linfócitos B/imunologia , Células Cultivadas , Galinhas , Expressão Gênica , Herpesvirus Galináceo 2/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala , Splicing de RNA , Organismos Livres de Patógenos Específicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA