Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 7(6): e39818, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745829

RESUMO

BACKGROUND: Glioblastoma (GB) is the most common and lethal type of primary brain tumor. Clinical outcome remains poor and is essentially palliative due to the highly invasive nature of the disease. A more thorough understanding of the molecular mechanisms that drive glioma invasion is required to limit dispersion of malignant glioma cells. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the potential role of differential expression of microRNAs (miRNA) in glioma invasion by comparing the matched large-scale, genome-wide miRNA expression profiles of migrating and migration-restricted human glioma cells. Migratory and migration-restricted cell populations from seven glioma cell lines were isolated and profiled for miRNA expression. Statistical analyses revealed a set of miRNAs common to all seven glioma cell lines that were significantly down regulated in the migrating cell population relative to cells in the migration-restricted population. Among the down-regulated miRNAs, miR-23b has been reported to target potential drivers of cell migration and invasion in other cell types. Over-expression of miR-23b significantly inhibited glioma cell migration and invasion. A bioinformatics search revealed a conserved target site within the 3' untranslated region (UTR) of Pyk2, a non-receptor tyrosine kinase previously implicated in the regulation of glioma cell migration and invasion. Increased expression of miR-23b reduced the protein expression level of Pyk2 in glioma cells but did not significantly alter the protein expression level of the related focal adhesion kinase FAK. Expression of Pyk2 via a transcript variant missing the 3'UTR in miR-23b-expressing cells partially rescued cell migration, whereas expression of Pyk2 via a transcript containing an intact 3'UTR failed to rescue cell migration. CONCLUSIONS/SIGNIFICANCE: Reduced expression of miR-23b enhances glioma cell migration in vitro and invasion ex vivo via modulation of Pyk2 protein expression. The data suggest that specific miRNAs may regulate glioma migration and invasion to influence the progression of this disease.


Assuntos
Movimento Celular/fisiologia , Quinase 2 de Adesão Focal/metabolismo , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Quinase 2 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/genética , Humanos , MicroRNAs/genética
2.
Mol Cancer Res ; 8(11): 1558-67, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20881009

RESUMO

A critical problem in the treatment of malignant gliomas is the extensive infiltration of individual tumor cells into adjacent brain tissues. This invasive phenotype severely limits all current therapies, and to date, no treatment is available to control the spread of this disease. Members of the tumor necrosis factor (TNF) ligand superfamily and their cognate receptors regulate various cellular responses including proliferation, migration, differentiation, and apoptosis. Specifically, the TNFRSF19/TROY gene encodes a type I cell surface receptor that is expressed on migrating or proliferating progenitor cells of the hippocampus, thalamus, and cerebral cortex. Here, we show that levels of TROY mRNA expression directly correlate with increasing glial tumor grade. Among malignant gliomas, TROY expression correlates inversely with overall patient survival. In addition, we show that TROY overexpression in glioma cells activates Rac1 signaling in a Pyk2-dependent manner to drive glioma cell invasion and migration. Pyk2 coimmunoprecipitates with the TROY receptor, and depletion of Pyk2 expression by short hairpin RNA interference oligonucleotides inhibits TROY-induced Rac1 activation and subsequent cellular migration. These findings position aberrant expression and/or signaling by TROY as a contributor, and possibly as a driver, of the malignant dispersion of glioma cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Glioblastoma/metabolismo , Receptores do Fator de Necrose Tumoral/biossíntese , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Quinase 2 de Adesão Focal/deficiência , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Imunoprecipitação , Invasividade Neoplásica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Transfecção , Proteínas rac1 de Ligação ao GTP/deficiência
3.
PLoS One ; 5(9): e13002, 2010 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-20885998

RESUMO

BACKGROUND: The ability to selectively detect and target cancer cells that have undergone an epithelial-mesenchymal transition (EMT) may lead to improved methods to treat cancers such as pancreatic cancer. The remodeling of cellular glycosylation previously has been associated with cell differentiation and may represent a valuable class of molecular targets for EMT. METHODOLOGY/PRINCIPAL FINDINGS: As a first step toward investigating the nature of glycosylation alterations in EMT, we characterized the expression of glycan-related genes in three in-vitro model systems that each represented a complementary aspect of pancreatic cancer EMT. These models included: 1) TGFß-induced EMT, which provided a look at the active transition between states; 2) a panel of 22 pancreatic cancer cell lines, which represented terminal differentiation states of either epithelial-like or mesenchymal-like; and 3) actively-migrating and stationary cells, which provided a look at the mechanism of migration. We analyzed expression data from a list of 587 genes involved in glycosylation (biosynthesis, sugar transport, glycan-binding, etc.) or EMT. Glycogenes were altered at a higher prevalence than all other genes in the first two models (p<0.05 and <0.005, respectively) but not in the migration model. Several functional themes were shared between the induced-EMT model and the cell line panel, including alterations to matrix components and proteoglycans, the sulfation of glycosaminoglycans; mannose receptor family members; initiation of O-glycosylation; and certain forms of sialylation. Protein-level changes were confirmed by Western blot for the mannose receptor MRC2 and the O-glycosylation enzyme GALNT3, and cell-surface sulfation changes were confirmed using Alcian Blue staining. CONCLUSIONS/SIGNIFICANCE: Alterations to glycogenes are a major component of cancer EMT and are characterized by changes to matrix components, the sulfation of GAGs, mannose receptors, O-glycosylation, and specific sialylated structures. These results provide leads for targeting aggressive and drug resistant forms of pancreatic cancer cells.


Assuntos
Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/fisiopatologia , Linhagem Celular Tumoral , Glicosilação , Humanos , Modelos Biológicos , Neoplasias Pancreáticas/metabolismo , Polissacarídeos/genética , Polissacarídeos/metabolismo , Proteínas/genética , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA