Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 39(1): 2403744, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39329328

RESUMO

Decaprenylphosphoryl-ß-D-ribose-oxidase (DprE1), a subunit of the essential decaprenylphosphoribose-2'-epimerase, plays a crucial role in the synthesis of cell wall arabinan components in mycobacteria, including the pathogen responsible for tuberculosis, Mycobacterium tuberculosis. In this study, we designed, synthesised, and evaluated 15 (BOK-1-BOK-10 and BOP-1-BOP-5) potential inhibitors of DprE1 from a series of 1,2,3-triazole ligands using a validated DprE1 inhibition assay. Two compounds, BOK-2 and BOK-3, demonstrated significant inhibition with IC50 values of 2.2 ± 0.1 and 3.0 ± 0.6 µM, respectively, whereas the standard drug (TCA-1) showed inhibition at 3.0 ± 0.2 µM. Through molecular modelling and dynamic simulations, we explored the structural relationships between selected 1,2,3-triazole compounds and DprE1, revealing key features for effective drug-target interactions. This study introduces a novel approach for designing ligands against DprE1, offering a potential therapeutic strategy for tuberculosis treatment.


Identification of 15 (BOK-1­BOK-10 and BOP-1­BOP-5) potent inhibitors of DprE1 enzyme from 1,2,3-triazole ligands.BOK-2 and BOK-3 exhibited significant DprE1 inhibition with IC50 values of 2.2 ± 0.1 and 3.0 ± 0.6 µM, respectively.Molecular modelling and dynamic simulations elucidated key structural features for effective drug­target interactions.Novel approach introduced for designing DprE1 ligands, potentially aiding tuberculosis treatment.Findings offer promising candidates for future tuberculosis research.


Assuntos
Benzoxazóis , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos , Mycobacterium tuberculosis , Triazóis , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Benzoxazóis/química , Benzoxazóis/farmacologia , Benzoxazóis/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Estrutura Molecular , Fluorometria , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Testes de Sensibilidade Microbiana , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/metabolismo
2.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569487

RESUMO

This study aimed to evaluate Attalea funifera seed oil with or without resveratrol entrapped in organogel nanoparticles in vitro against A375 human melanoma tumor cells. Organogel nanoparticles with seed oil (SON) or with resveratrol entrapped in the seed oil (RSON) formed functional organogel nanoparticles that showed a particle size <100 nm, polydispersity index <0.3, negative zeta potential, and maintenance of electrical conductivity. The resveratrol entrapment efficiency in RSON was 99 ± 1%. The seed oil and SON showed no cytotoxicity against human non-tumor cells or tumor cells. Resveratrol at 50 µg/mL was cytotoxic for non-tumor cells, and was cytotoxic for tumor cells at 25 µg/mL. Resveratrol entrapped in RSON showed a decrease in cytotoxicity against non-tumor cells and cytotoxic against tumor cells at 50 µg/mL. Thus, SON is a potential new platform for the delivery of resveratrol with selective cytotoxic activity in the treatment of melanoma.


Assuntos
Antineoplásicos , Arecaceae , Melanoma , Nanogéis , Sistemas de Liberação de Fármacos por Nanopartículas , Óleo de Palmeira , Resveratrol , Resveratrol/administração & dosagem , Melanoma/terapia , Humanos , Linhagem Celular Tumoral , Nanogéis/administração & dosagem , Nanogéis/química , Arecaceae/química , Óleo de Palmeira/química , Sementes/química , Tamanho da Partícula , Antineoplásicos/administração & dosagem , Antineoplásicos/química
3.
Molecules ; 28(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175297

RESUMO

This work describes the preparation, characterization and antimicrobial activity of four palladium(II) complexes, namely, [Pd(meg)(1,10-phen)] 1, [Pd(meg)(PPh3)2] 2, [Pd(og)(1,10-phen)] 3 and [Pd(og)(PPh3)2] 4, where meg = methyl gallate, og = octyl gallate, 1,10-phen = 1,10-phenanthroline and PPh3 = triphenylphosphine. As to the chemical structures, spectral and physicochemical studies of 1-4 indicated that methyl or octyl gallate coordinates a palladium(II) ion through two oxygen atoms upon deprotonation. A chelating bidentate phenanthroline or two triphenylphosphine molecules complete the coordination sphere of palladium(II) ion, depending on the complex. The metal complexes were tested against the Mycobacterium tuberculosis H37Rv strain and 2 exhibited high activity (MIC = 3.28 µg/mL). As to the tests with Campylobacter jejuni, complex 1 showed a significant effect in reducing bacterial population (greater than 7 log CFU) in planktonic forms, as well as in the biomass intensity (IBF: 0.87) when compared to peracetic acid (IBF: 1.11) at a concentration of 400 µg/mL. The effect provided by these complexes has specificity according to the target microorganism and represent a promising alternative for the control of microorganisms of public health importance.


Assuntos
Campylobacter jejuni , Complexos de Coordenação , Mycobacterium tuberculosis , Paládio/farmacologia , Paládio/química , Cristalografia por Raios X , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
4.
Planta Med ; 88(5): 405-415, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33511621

RESUMO

Myrcia bella is a medicinal plant used for the treatment of diabetes, hemorrhages, and hypertension in Brazilian folk medicine. Considering that plant extracts are attractive sources of new drugs, the aim of the present study was to verify the influence of incorporating 70% hydroalcoholic of M. bella leaves in nanostructured lipid systems on the mutagenic and antifungal activities of the extract. In this work, we evaluated the antifungal potential of M. bella loaded on the microemulsion against Candida sp for minimum inhibitory concentration, using the microdilution technique. The system was composed of polyoxyethylene 20 cetyl ether and soybean phosphatidylcholine (10%), grape seed oil, cholesterol (10%: proportion 5/1), and purified water (80%). To investigate the mutagenic activity, the Ames test was used with the Salmonella Typhimurium tester strains. M. bella, either incorporated or free, showed an important antifungal effect against all tested strains. Moreover, the incorporation surprisingly inhibited the mutagenicity presented by the extract. The present study attests the antimicrobial properties of M. bella extract, contributing to the search for new natural products with biological activities and suggesting caution in its use for medicinal purposes. In addition, the results emphasize the importance of the use of nanotechnology associated with natural products as a strategy for the control of infections caused mainly by the genus Candida sp.


Assuntos
Myrtaceae , Plantas Medicinais , Antifúngicos/farmacologia , Mutagênicos , Extratos Vegetais/farmacologia
5.
Drug Dev Res ; 83(4): 842-858, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35106801

RESUMO

Tuberculosis (TB) is an infectious disease caused predominantly by Mycobacterium tuberculosis (Mtb). It was responsible for approximately 1.4 million deaths worldwide in 2019. The lack of new drugs to treat drug-resistant strains is a principal factor for the slow rise in TB infections. Our aim is to aid the development of new TB treatments by describing improvements (last decade, 2011-2021) to nitro(NO2 )-based compounds that have shown activity or pharmacological properties (e.g., anti-proliferative, anti-kinetoplastid) against Mtb. For all compounds, we have included final correlations of minimum inhibitory concentrations against Mtb (H37 Rv).


Assuntos
Compostos Heterocíclicos , Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Desenvolvimento de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Dióxido de Nitrogênio/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
6.
Drug Dev Res ; 83(3): 567-577, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35040503

RESUMO

In 2019, tuberculosis (TB) caused approximately 1.4 million deaths around the world. TB is an infectious respiratory disease mainly caused by Mycobacterium tuberculosis. The lack of new drugs to treat drug-resistant strains is a principal factor for the continuous slow rise in TB infections. Sulfonamides are active moieties in various drugs used against several sicknesses, including TB. Our aim is to aid the development of new TB treatments and drugs by describing recent improvements (2011-2021) to sulfonamide-based compounds.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Humanos , Sulfonamidas/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
7.
Drug Dev Res ; 83(7): 1534-1554, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36042694

RESUMO

Bacterial resistance is a problem that is giving serious cause for concern because bacterial strains such as Acinetobacter baumannii and Pseudomonas aeruginosa are difficult to treat and highly opportunistic. These bacteria easily acquire resistance genes even from other species, which confers greater persistence and tolerance towards conventional antibiotics. These bacteria have the highest death rate in hospitalized intensive care patients, so strong measures must be taken. In this review, we focus on the use of antimicrobial peptides (AMPs) as an alternative to traditional drugs, due to their rapid action and lower risk of generating resistance by microorganisms. We also present an overview of beta-lactams and explicitly explain the activity of AMPs against carbapenemase-producing bacteria as potential alternative agents for infection control.


Assuntos
Acinetobacter baumannii , Peptídeos Antimicrobianos , Humanos , Resistência beta-Lactâmica/genética , Acinetobacter baumannii/genética , beta-Lactamas/farmacologia , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
8.
J Microencapsul ; 39(1): 61-71, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34984941

RESUMO

This study aimed to encapsulate and characterise a potential anti-tuberculosis copper complex (CuCl2(INH)2.H2O:I1) into polymeric nanoparticles (PNs) of polymethacrylate copolymers (Eudragit®, Eu) developed by nanoprecipitation method. NE30D, S100 and, E100 polymers were tested. The physicochemical characterisations were performed by DLS, TEM, FTIR, encapsulation efficiency and, in vitro release studies. Encapsulation of I1 in PN-NE30D, PN-E100, and PN-S100 was 26.3%, 94.5%, 22.6%, respectively. The particle size and zeta potentials were 82.3 nm and -24.5 mV for PNs-NE30D, 304.4 nm and +18.7 mV for PNs-E100, and 517.9 nm and -6.9 mV for PNs-S100, respectively. All PDIs were under 0.5. The formulations showed an I1 controlled release at alkaline pH with 29.7% from PNs-NE30D, 7.9% from PNs-E100 and, 28.1% from PNs-S100 at 1 h incubation. PNs were stable for at least 3 months. Particularly, PNs-NE30D demonstrated moderate inhibition of M. tuberculosis and low cytotoxic activity. None of the PNs induced mutagenicity.


Assuntos
Cobre , Nanopartículas , Antibacterianos , Cobre/farmacologia , Mutagênicos , Tamanho da Partícula , Polímeros
9.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887018

RESUMO

Nanoparticles of metal-organic frameworks (MOF NPs) are crystalline hybrid micro- or mesoporous nanomaterials that show great promise in biomedicine due to their significant drug loading ability and controlled release. Herein, we develop porous capsules from aggregate of nanoparticles of the iron carboxylate MIL-100(Fe) through a low-temperature spray-drying route. This enables the concomitant one-pot encapsulation of high loading of an antitumor drug, methotrexate, within the pores of the MOF NPs, and the collagenase enzyme (COL), inside the inter-particular mesoporous cavities, upon the formation of the capsule, enhancing tumor treatment. This association provides better control of the release of the active moieties, MTX and collagenase, in simulated body fluid conditions in comparison with the bare MOF NPs. In addition, the loaded MIL-100 capsules present, against the A-375 cancer cell line, selective toxicity nine times higher than for the normal HaCaT cells, suggesting that MTX@COL@MIL-100 capsules may have potential application in the selective treatment of cancer cells. We highlight that an appropriate level of collagenase activity remained after encapsulation using the spray dryer equipment. Therefore, this work describes a novel application of MOF-based capsules as a dual drug delivery system for cancer treatment.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Cápsulas , Sistemas de Liberação de Medicamentos , Estruturas Metalorgânicas/química , Nanopartículas/química , Neoplasias/tratamento farmacológico
10.
Bioorg Chem ; 116: 105279, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509799

RESUMO

Staphylococcus aureus is the one of the most successful modern pathogens. The same bacterium that lives as a skin and mucosal commensal can be transmitted in health-care and community-settings and causes severe infections. Thus, there is a great challenge for a discovery of novel anti-Staphylococcus aureus compounds, which should act against resistant strains. Herein, we designed and synthesized a series of 17 chalcones, substituted by amino group on ring A, which were evaluated against methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus MRSA planktonic cells. The antibacterial potency was improved by substituents on ring B, which were designed according to Topliss' manual method. 4-bromo-3'-aminochalcone (5f) was the most active, demonstrating minimum inhibitory concentration (MIC) values of 1.9 µg mL-1 and 7.8 µg mL-1 against MSSA and MRSA, respectively. The association of 5f with vancomycin demonstrated synergistic effect against MSSA and MRSA, with Fractional Inhibitory Concentration Index (FICI) values of 0.4 and 0.3, respectively. Subinhibitory concentration of 5f inhibited the MSSA and MRSA adhesion to human keratinocytes. Chalcone 5f was able to reduce MSSA and MRSA biofilm formation, as well as acts on preformed biofilm in concentration-dependent mode. Scanning electron microscopy analyses confirmed severe perturbations caused by 5f on MSSA and MRSA biofilm architecture. The acute toxicity assay, using Galleria mellonella larvae, indicated a low toxic effect of 5f after 72 h, displaying lethality of 20% and 30% at 7.8 µg mL-1 and 78.0 µg mL-1, respectively. In addition, the antibacterial activity spectrum of 5f indicated action against planktonic cells of Enterococcus faecalis (MIC = 7.8 µg mL-1), Acinetobacter baumannii (MIC = 15.6 µg mL-1) and Mycobacterium tuberculosis (MIC = 5.7 µg mL-1). Altogether, these results open new avenues for 5f as an anti-Staphylococcus aureus agent, with potential applications as antibacterial drug, adjunct of antibiotics and medical devices coating.


Assuntos
Antibacterianos/farmacologia , Chalconas/farmacologia , Desenho de Fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
11.
Bioorg Chem ; 109: 104668, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33601139

RESUMO

Curcumin (CUR) is a symmetrical dicarbonyl compound with antibacterial activity. On the other hand, pharmacokinetic and chemical stability limitations hinder its therapeutic application. Monocarbonyl analogs of curcumin (MACs) have been shown to overcome these barriers. We synthesized and investigated the antibacterial activity of a series of unsymmetrical MACs derived from acetone against Mycobacterium tuberculosis and Gram-negative and Gram-positive species. Phenolic MACs 4, 6 and 8 showed a broad spectrum and potent activity, mainly against M. tuberculosis, Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus (MRSA), with MIC (minimum inhibitory concentration) values ranging from 0.9 to 15.6 µg/mL. The investigation regarding toxicity on human lung cells (MRC-5 and A549 lines) revealed MAC 4 was more selective than MACs 6 and 8, with SI (selectivity index) values ranging from 5.4 to 15.6. In addition, MAC 4 did not demonstrate genotoxic effects on A549 cells and it was more stable than CUR in phosphate buffer (pH 7.4) for 24 h at 37 °C. Fluorescence and phase contrast microscopies indicated that MAC 4 has the ability to disrupt the divisome of Bacillus subtilis without damaging its cytoplasmic membrane. However, biochemical investigations demonstrated that MAC 4 did not affect the GTPase activity of B. subtilis FtsZ, which is the main constituent of the bacterial divisome. These results corroborated that MAC 4 is a promising antitubercular and antibacterial agent.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Bacillus subtilis/efeitos dos fármacos , Linhagem Celular , Curcumina/química , Desenho de Fármacos , Desenvolvimento de Medicamentos , Humanos , Pulmão/citologia , Estrutura Molecular
12.
Molecules ; 26(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800893

RESUMO

In order to replace the huge amounts of copper salts used in citrus orchards, alternatives have been sought in the form of organic compounds of natural origin with activity against the causative agent of citrus canker, the phytopathogen Xanthomonas citri subsp. Citri. We synthesized a series of 4-alkoxy-1,2-benzene diols (alkyl-BDOs) using 1,2,4-benzenetriol (BTO) as a starting material through a three-step synthesis route and evaluated their suitability as antibacterial compounds. Our results show that alkyl ethers derived from 1,2,4-benzenetriol have bactericidal activity against X. citri, disrupting the bacterial cell membrane within 15 min. Alkyl-BDOs were also shown to remain active against the bacteria while in solution, and presented low toxicity to (human) MRC-5 cells. Therefore, we have demonstrated that 1,2,4-benzenetriol-a molecule that can be obtained from agricultural residues-is an adequate precursor for the synthesis of new compounds with activity against X. citri.


Assuntos
Antibacterianos/farmacologia , Derivados de Benzeno/farmacologia , Citrus/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Xanthomonas/patogenicidade , Antibacterianos/química , Derivados de Benzeno/química , Proliferação de Células , Citrus/microbiologia , Fibroblastos/citologia , Humanos , Folhas de Planta/microbiologia
13.
Mol Pharm ; 17(7): 2287-2298, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32515970

RESUMO

Helicobacter pylori inhabits the gastric epithelium and can promote the development of gastric disorders, such as peptic ulcers, acute and chronic gastritis, mucosal lymphoid tissue (MALT), and gastric adenocarcinomas. To use nanotechnology as a tool to increase the antibacterial activity of silver I [Ag(I)] compounds, this study suggests a new strategy for H. pylori infections, which have hitherto been difficult to control. [Ag (PhTSC·HCl)2] (NO3)·H2O (compound 1) was synthesized, characterized, and loaded into polymeric nanoparticles (PN1). PN1 had been developed by nanoprecipitation with poly(ε-caprolactone) polymer and poloxamer 407 surfactant. System characterization assays showed that the PNs had adequate particle sizes and ζ-potentials. Transmission electron microscopy confirmed the formation of polymeric nanoparticles (PNs). Compound 1 had a minimum inhibitory concentration for H. pylori of 3.90 µg/mL, which was potentiated to 0.781 µg/mL after loading. The minimum bactericidal concentration of 7.81 µg/mL was potentiated 5-fold to 1.56 µg/mL in PN. Compound 1 loaded in PN1 displayed better activity for H. pylori biofilm formation and mature biofilm. PN1 reduced the toxicity of compound 1 to MRC-5 cells. Loading compound 1 into PN1 inhibited the mutagenicity of the free compound. In vivo, the system allowed survival of Galleria mellonella larvae at a concentration of 200 µg/mL. This is the first demonstration of the antibacterial activity of a silver complex enclosed in polymeric nanoparticles against H. pylori.


Assuntos
Antibacterianos/farmacologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/fisiologia , Nanopartículas Metálicas/química , Polímeros/química , Compostos de Prata/farmacologia , Animais , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Fibroblastos/efeitos dos fármacos , Infecções por Helicobacter/tratamento farmacológico , Humanos , Concentração Inibidora 50 , Larva/efeitos dos fármacos , Lepidópteros/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Tamanho da Partícula , Compostos de Prata/química
14.
Bioorg Med Chem ; 28(15): 115600, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32631571

RESUMO

The enzyme dihydrofolate reductase from M.tuberculosis (MtDHFR) has a high unexploited potential to be a target for new drugs against tuberculosis (TB), due to its importance for pathogen survival. Preliminary studies have obtained fragment-like molecules with low affinity to MtDHFR which can potentially become lead compounds. Taking this into account, the fragment MB872 was used as a prototype for analogue development by bioisosterism/retro-bioisosterism, which resulted in 20 new substituted 3-benzoic acid derivatives. Compounds were active against MtDHFR, with IC50 values ranging from 7 to 40 µM, where compound 4e not only had the best inhibitory activity (IC50 = 7 µM), but also was 71-fold more active than the original fragment MB872. The 4e inhibition kinetics indicated an uncompetitive mechanism, which was supported by molecular modeling which suggested that the compounds can access an independent backpocket from the substrate and competitive inhibitors. Thus, based on these results, substituted 3-benzoic acid derivatives have strong potential to be developed as novel MtDHFR inhibitors and also anti-TB agents.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Benzoatos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/metabolismo , Antituberculosos/síntese química , Antituberculosos/metabolismo , Proteínas de Bactérias/química , Benzoatos/síntese química , Benzoatos/metabolismo , Domínio Catalítico , Desenho de Fármacos , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/metabolismo , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/química
15.
Regul Toxicol Pharmacol ; 113: 104653, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32268159

RESUMO

Considering the promising previous results of Cu (II) complexes with isoniazid active ligand against Mycobacterium tuberculosis, the main causative agent of tuberculosis, novel biological assays evaluating its toxicogenic potential were performed to ensure the safe use. The genotoxicity/mutagenicity of the complexes CuCl2(INH)2.H2O (I1), Cu(NCS)2(INH)2.5H2O (I2) and Cu(NCO)2(INH)2.4H2O (I3) was evaluated by the Comet, Micronucleus-cytome and Salmonella microsome (Ames test) assays. The cell viability using resazurin assay indicated that I1, I2 e I3 had moderate to low capacity to reduce the viability of colorectal cells (Caco-2), liver cells (HepG2), lung cells (GM 07492-A and A549) and endothelial cells (HU-VE-C). On genotoxicity/mutagenicity, I1 complex did not induce sizable levels of DNA damage in HepG2 cells (Comet assay), and gene (Ames test) and chromosomal (Micronucleus-cytome assay) mutations. Already, I2 and I3 complexes were considered mutagenic in the highest concentrations used. In light of the above, these results contribute to valuable data on the safe use of Cu(II) complexes. Considering the absence of mutagenicity and cytotoxicity of I1, this complex is a potential candidate for the development of a new drug to the treatment tuberculosis, while I2 and I3 require caution in its use.


Assuntos
Antituberculosos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Células A549 , Antituberculosos/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Complexos de Coordenação/química , Cobre/química , Células Hep G2 , Humanos , Isoniazida/química , Ligantes , Testes de Sensibilidade Microbiana , Conformação Molecular , Testes de Mutagenicidade , Mycobacterium tuberculosis/citologia
16.
Bioorg Med Chem Lett ; 29(8): 974-977, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30803803

RESUMO

Identification of new antibiotics suitable for the treatment of tuberculosis is required. In addition to selectivity, it is necessary to find new antibiotics that are effective when the tuberculous mycobacteria are resistant to the available therapies. The furo[2,3-b]pyridine core offers potential for this application. Herein, we have described the screening of our in-house library of furopyridines against Mycobacterium tuberculosis and identified a promising selective bioactive compound against different drug-resistant strains of this mycobacteria. The library of compounds was prepared by a CH amination reaction using mild and metal-free conditions, increasing the available information about the reactivity of furo[2,3-b]pyridine core through this reaction.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Furanos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Piridinas/química , Aminação , Antituberculosos/química , Testes de Sensibilidade Microbiana , Piridinas/farmacologia , Relação Estrutura-Atividade
17.
Biometals ; 32(1): 89-100, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30506342

RESUMO

Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anticancer agents. Previous studies showed that three ruthenium(II) compounds: [Ru(pySH)(bipy)(dppb)]PF6 (1), [Ru(HSpym)(bipy)(dppb)]PF6 (2) and Ru[(SpymMe2)(bipy)(dppb)]PF6 (3) presented anticancer properties higher than doxorubicin and cisplatin and acted as human topoisomerase IB (Topo I) inhibitors. Here, we focused our studies on in vitro intestinal permeability and anticancer mechanisms of these three complexes. Caco-2 permeation studies showed that 1 did not permeate the monolayer of intestinal cells, suggesting a lack of absorption on oral administration, while 2 and 3 permeated the cells after 60 and 120 min, respectively. Complexes 2 and 3 fully inhibited Topo II relaxation activity at 125 µM. In previously studies, 3 was the most potent inhibitor of Topo I, here, we concluded that it is a dual topoisomerase inhibitor. Moreover, it presented selectivity to cancer cells when evaluated by clonogenic assay. Thus, 3 was selected to gene expression assay front MDA-MB-231 cells from triple-negative breast cancer (TNBC), which represents the highly aggressive subgroup of breast cancers with poor prognosis. The analyses revealed changes of 27 out of 84 sought target genes. PARP1 and PARP2 were 5.29 and 1.83 times down-regulated after treatment with 3, respectively. PARPs have been attractive antitumor drug targets, considering PARP inhibition could suppress DNA damage repair and sensitize tumor cells to DNA damage agents. Recent advances in DNA repair studies have shown that an approach that causes cell lethality using synthetic PARP-inhibiting drugs has produced promising results in TNBC.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Rutênio/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/química , Células CACO-2 , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Rutênio/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/química
18.
Bioorg Chem ; 90: 103031, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31238181

RESUMO

Curcumin is a plant diphenylheptanoid and has been investigated for its antibacterial activity. However, the therapeutic uses of this compound are limited due to its chemical instability. In this work, we evaluated the antimicrobial activity of diphenylheptanoids derived from curcumin against Gram-positive and Gram-negative bacteria, and also against Mycobacterium tuberculosis in terms of MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values. 3,3'-Dihydroxycurcumin (DHC) displayed activity against Enterococcus faecalis, Staphylococcus aureus and M. tuberculosis, demonstrating MIC values of 78 and 156 µg/mL. In addition, DHC was more stable than curcumin in acetate buffer (pH 5.0) and phosphate buffer (pH 7.4) for 24 h at 37 °C. We proposed that membrane and the cell division protein FtsZ could be the targets for DHC due to that fact that curcumin exhibits this mode of antibacterial action. Fluorescence microscopy of Bacillus subtilis stained with SYTO9 and propidium iodide fluorophores indicated that DHC has the ability to perturb the bacterial membrane. On the other hand, DHC showed a weak inhibition of the GTPase activity of B. subtilis FtsZ. Toxicity assay using human cells indicated that DHC has moderate capacity to reduce viability of liver cells (HepG2 line) and lung cells (MRC-5 and A549 lines) when compared with doxorubicin. Alkaline comet assay indicated that DHC was not able to induce DNA damage in A549 cell line. These results indicated that DHC is promising compound with antibacterial and antitubercular activities.


Assuntos
Antituberculosos/farmacologia , Membrana Celular/efeitos dos fármacos , Curcumina/análogos & derivados , Curcumina/farmacologia , Antituberculosos/síntese química , Antituberculosos/toxicidade , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Linhagem Celular Tumoral , Curcumina/toxicidade , Proteínas do Citoesqueleto/antagonistas & inibidores , DNA/efeitos dos fármacos , Estabilidade de Medicamentos , GTP Fosfo-Hidrolases/antagonistas & inibidores , Humanos , Testes de Sensibilidade Microbiana
19.
Bioorg Chem ; 85: 455-468, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30776556

RESUMO

This study describes a series of newly synthesized phosphine/diimine ruthenium complexes containing the lawsone as bioligand with enhanced cytotoxicity against different cancer cells, and apoptosis induction in prostatic cancer cells DU-145. The complexes [Ru(law)(N-N)2]PF6 where N-N is 2,2'-bipyridine (1) or 1,10-phenanthroline (2) and [Ru(law)(dppm)(N-N)]PF6, where dppm means bis(diphenylphosphino)methane, N-N is 2,2'-bipyridine (3) or 1,10-phenanthroline (4), and law is lawsone, were synthesized and fully characterized by elemental analysis, molar conductivity, NMR, UV-vis, IR spectroscopies and cyclic voltammetry. The interaction of the complexes (1-4) with DNA was evaluated by circular dichroism, gel electrophoresis, and fluorescence, and the complexes presented interactions by the minor grooves DNA. The phosphinic series of complexes exhibited a remarkably broad spectrum of anticancer activity with approximately 34-fold higher than cisplatin and 5-fold higher than doxorubicin, inhibiting the growth of 3D tumor spheroids and the ability to retain the colony survival of DU-145 cells. Also, the complex (4) inhibits DU-145 cell adhesion and migration potential indicating antimetastatic properties. The mechanism of its anticancer activity was found to be related to increased reactive oxygen species (ROS) generation, increased the BAX/BCL-2 ratio and subsequent apoptosis induction. Overall, these findings suggested that the complex (4) could be a promising candidate for further evaluation as a chemotherapeutic agent in the prostate cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Naftoquinonas/farmacologia , Esferoides Celulares/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Bovinos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , DNA/metabolismo , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/farmacologia , Masculino , Naftoquinonas/síntese química , Naftoquinonas/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Rutênio/química
20.
AAPS PharmSciTech ; 20(6): 225, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31214798

RESUMO

The vaginal mucosa is a very promising route for drug administration due to its high permeability and the possibility to bypass first pass metabolism; however, current vaginal dosage forms present low retention times due to their dilution in vaginal fluids, which hampers the efficacy of many pharmacological treatments. In order to overcome these problems, this study proposes to develop a mucoadhesive in situ gelling liquid crystalline precursor system composed of 30% of oleic acid and cholesterol (7:1), 40% of ethoxylated and propoxylated cetyl alcohol, and 30% of a dispersion of 16% Poloxamer 407. The effect of the dilution with simulated vaginal fluid (SVF) on this system was evaluated by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), rheological studies, texture profile analysis (TPA), mucoadhesion study, in vitro drug release test using hypericin (HYP) as drug model, and cytotoxicity assay. PLM and SAXS confirmed the formation of an isotropic system. After the addition of three different concentrations of SVF (30, 50, and 100%), the resultant formulations presented anisotropy and characteristics of viscous lamellar phases. Rheology shows that formulations with SVF behaved as a non-Newtonian fluid with suitable shear thinning for vaginal application. TPA and mucoadhesion assays indicated the formation of long-range ordered systems as the amount of SVF increases which may assist in the fixation of the formulation on the vaginal mucosa. The formulations were able to control about 75% of the released HYP demonstrating a sustained release profile. Finally, all formulations acted as safe vaginal drug delivery systems.


Assuntos
Administração Intravaginal , Géis/metabolismo , Mucosa/metabolismo , Animais , Líquidos Corporais , Cristalização , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Poloxâmero/metabolismo , Reologia , Espalhamento a Baixo Ângulo , Vagina , Viscosidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA