Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(2): 549-556, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174901

RESUMO

Rhombic dodecahedral nanocrystals have been considered particularly difficult to synthesize because they are enclosed by {110}, a low-index facet with the greatest surface energy. Recently, we demonstrated the use of seed-mediated growth for the facile and robust synthesis of Au rhombic dodecahedral nanocrystals (AuRD). While the unique shape and surface structure of AuRD are desirable for potential applications in plasmonics and catalysis, respectively, their high surface energy makes them highly susceptible to thermal degradation. Here we demonstrate that it is feasible to greatly improve the thermal stability with some sacrifice to the plasmonic properties of the original AuRD by coating their surface with an ultrathin shell made of Pt. Our in situ electron microscopy analysis indicates that the ultrathin Pt coating can increase the thermal stability from 60 up to 450 °C, a trend that is also supported by the results from a computational study.

2.
J Phys Chem C Nanomater Interfaces ; 128(3): 1377-1385, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38293691

RESUMO

Bimetallic nanocrystals provide a versatile platform for utilizing the desired characteristics of two different elements within one particle. Core-shell nanocrystals, in particular, have found widespread use in catalysis by providing an ability to leverage the strains arising from the lattice mismatch between the core and the shell. However, large (>5%) lattice mismatch tends to result in nonepitaxial growth and lattice defects in an effort to release the strain. Herein, we report the epitaxial growth of Au on Rh cubic seeds under mild reaction conditions to generate Rh@Au truncated octahedra featuring a lattice mismatch of 7.2%. Key to the success was the use of small (4.5 nm) Rh cubes as seeds, which could homogeneously distribute the tensile strain arising from the epitaxial growth of a conformal, compressively strained Au shell. Further, delicate tuning of kinetic parameters through the introduction of NaOH and KBr into the synthesis allowed for a unique nucleation pattern that led to centrally located cores and a narrow size distribution for the product. A thorough investigation of the various possible highly strained morphologies was conducted to gain a full understanding of the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA