Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(23): 6756-6771, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37818677

RESUMO

Understanding large-scale drivers of biodiversity in palustrine wetlands is challenging due to the combined effects of macroclimate and local edaphic conditions. In boreal and temperate fen ecosystems, the influence of macroclimate on biodiversity is modulated by hydrological settings across habitats, making it difficult to assess their vulnerability to climate change. Here, we investigate the influence of macroclimate and edaphic factors on three Essential Biodiversity Variables across eight ecologically defined habitats that align with ecosystem classifications and red lists. We used 27,555 vegetation plot samples from European fens to assess the influence of macroclimate and groundwater pH predictors on the geographic distribution of each habitat type. Additionally, we modeled the relative influence of macroclimate, water pH, and water table depth on community species richness and composition, focusing on 309 plant specialists. Our models reveal strong effects of mean annual temperature, diurnal thermal range, and summer temperature on biodiversity variables, with contrasting differences among habitats. While macroclimatic factors primarily shape geographic distributions and species richness, edaphic factors emerge as the primary drivers of composition for vascular plants and bryophytes. Annual precipitation exhibits non-linear effects on fen biodiversity, with varying impact across habitats with different hydrological characteristics, suggesting a minimum requirement of 600 mm of annual precipitation for the occurrence of fen ecosystems. Our results anticipate potential impacts of climate warming on European fens, with predictable changes among habitat types and geographic regions. Moreover, we provide evidence that the drivers of biodiversity in boreal and temperate fens are closely tied to the ecological characteristics of each habitat type and the dispersal abilities of bryophytes and vascular plants. Given that the influence of macroclimate and edaphic factors on fen ecosystems is habitat specific, climate change research and conservation actions should consider ecological differentiation within functional IUCN ecosystems at continental and regional scales.


Assuntos
Briófitas , Traqueófitas , Ecossistema , Biodiversidade , Áreas Alagadas , Plantas
2.
Glob Chang Biol ; 28(3): 1023-1037, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748262

RESUMO

Rising temperatures may endanger fragile ecosystems because their character and key species show different habitat affinities under different climates. This assumption has only been tested in limited geographical scales. In fens, one of the most endangered ecosystems in Europe, broader pH niches have been reported from cold areas and are expected for colder past periods. We used the largest European-scale vegetation database from fens to test the hypothesis that pH interacts with macroclimate temperature in forming realized niches of fen moss and vascular plant species. We calibrated the data set (29,885 plots after heterogeneity-constrained resampling) with temperature, using two macroclimate variables, and with the adjusted pH, a variable combining pH and calcium richness. We modelled temperature, pH and water level niches for one hundred species best characterizing European fens using generalized additive models and tested the interaction between pH and temperature. Fifty-five fen species showed a statistically significant interaction between pH and temperature (adj p Ë‚ .01). Forty-six of them (84%) showed a positive interaction manifested by a shift or restriction of their niche to higher pH in warmer locations. Nine vascular plants and no moss showed the opposite interaction. Mosses showed significantly greater interaction. We conclude that climate significantly modulates edaphic niches of fen plants, especially bryophytes. This result explains previously reported regional changes in realized pH niches, a current habitat-dependent decline of endangered taxa, and distribution changes in the past. A warmer climate makes growing seasons longer and warmer, increases productivity, and may lower the water level. These effects prolong the duration and intensity of interspecific competition, support highly competitive Sphagnum mosses, and, as such, force niches of specialized fen species towards narrower high-pH ranges. Recent anthropogenic landscape changes pose a severe threat to many fen species and call for mitigation measures to lower competition pressure in their refugia.


Assuntos
Briófitas , Sphagnopsida , Mudança Climática , Ecossistema , Concentração de Íons de Hidrogênio , Temperatura
3.
Nature ; 505(7481): 82-6, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24240278

RESUMO

Plant species diversity in Eurasian wetlands and grasslands depends not only on productivity but also on the relative availability of nutrients, particularly of nitrogen and phosphorus. Here we show that the impacts of nitrogen:phosphorus stoichiometry on plant species richness can be explained by selected plant life-history traits, notably by plant investments in growth versus reproduction. In 599 Eurasian sites with herbaceous vegetation we examined the relationship between the local nutrient conditions and community-mean life-history traits. We found that compared with plants in nitrogen-limited communities, plants in phosphorus-limited communities invest little in sexual reproduction (for example, less investment in seed, shorter flowering period, longer lifespan) and have conservative leaf economy traits (that is, a low specific leaf area and a high leaf dry-matter content). Endangered species were more frequent in phosphorus-limited ecosystems and they too invested little in sexual reproduction. The results provide new insight into how plant adaptations to nutrient conditions can drive the distribution of plant species in natural ecosystems and can account for the vulnerability of endangered species.


Assuntos
Adaptação Fisiológica , Fósforo/deficiência , Fósforo/metabolismo , Plantas/metabolismo , Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Extinção Biológica , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Feixe Vascular de Plantas/metabolismo , Plantas/anatomia & histologia , Reprodução
4.
PhytoKeys ; 184: 83-101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34785973

RESUMO

Salixlapponum is a cold-tolerant relict species in Europe that occurs in several sites, probably reflecting previous migration routes of S.lapponum during the Pleistocene. However, only a few data are available on the genetic structures of populations of S.lapponum. In this study, we use PCR-ISSR markers to investigate genetic variation in 19 European populations of S.lapponum L. AMOVA analysis shows that most of the variation (55.8%) occurs within populations; variability among groups accounts for 19.7%. An AMOVA analysis based on four groups determined by STRUCTURE analysis shows similar results: variability of 54.1% within the population and variability of 18.9% between the four population groups, based on geographic regions. Within individual geographic groups, which are characterised by the studied populations, the lowest variability (as well as the highest homogeneity) was found in populations located in Belarus. The obtained results are consistent with our expectations that the European Lowland could be a significant geographic barrier for gene flow over large geographic distances for S.lapponum. Both the Scandinavian and Belarusian populations, as well as those coming from NE Poland, are characterised by significant genetic distinctiveness. However, some populations from NE Poland and the Sudetes show similarities with populations from other geographic regions, indicating existing genetic relationships between them. Moreover, the results suggest a fairly clear division of the population into 4 emerging geographic regions, although separated by a geographical barrier: the Polish lowland, which forms part of the larger geographic unit known as the European Lowland.

5.
PLoS One ; 14(4): e0215645, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017976

RESUMO

In peatland restoration we often lack an information whether re-established ecosystems are functionally similar to non-degraded ones. We re-analysed the long-term outcomes of restoration on vegetation and plant functional traits in 38 European fens restored by rewetting (18 sites) and topsoil removal (20 sites). We used traits related to nutrient acquisition strategies, competitiveness, seed traits, and used single- and multi-trait metrics. A separate set of vegetation records from near-natural fens with diverse plant communities was used to generate reference values to aid the comparisons. We found that both restoration methods enhanced the similarity of species composition to non-degraded systems but trait analysis revealed differences between the two approaches. Traits linked to nutrient acquisition strategies indicated that topsoil removal was more effective than rewetting. After topsoil removal competitive species in plant communities had decreased, while stress-tolerant species had increased. A substantial reduction in nutrient availability ruled out the effect of initial disturbance. An ability to survive and grow in anoxic conditions was enhanced after restoration, but the reference values were not achieved. Rewetting was more effective than topsoil removal in restricting variation in traits values permitted in re-developing vegetation. We found no indication of a shift towards reference in seed traits, which suggested that dispersal constraint and colonization deficit can be a widespread phenomena. Two functional diversity indices: functional richness and functional dispersion showed response to restoration and shifted values towards reference mires and away from the degraded systems. We concluded that targeting only one type of environmental stressor does not lead to a recovery of fens, as it provides insufficient level of stress to restore a functional ecosystem. In general, restoration efforts do not ensure the re-establishment and long-term persistence of fens. Restoration efforts result in recovery of fen ecosystems, confirmed with our functional trait analysis, although more rigid actions are needed for restoring fully functional mires, by achieving high and constant levels of anoxia and nutrient stresses.


Assuntos
Conservação dos Recursos Naturais/métodos , Fenômenos Fisiológicos Vegetais , Áreas Alagadas , Biodiversidade , Ecossistema , Europa (Continente) , Desenvolvimento Vegetal , Solo , Estresse Fisiológico
6.
PeerJ ; 6: e5512, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245925

RESUMO

BACKGROUND: Swertia perennis (Gentianaceae) is a perennial diploid and clonal plant species that is discontinuously distributed in peat bogs in the mountains of Europe, Asia and North America as well as in the lowlands of Europe. The current geographical dispersion of S. perennis is probably the result of quaternary climatic changes that have played an important role in determining the distribution of Swertia and other plant and animal species. METHODS: In this study we used molecular techniques and combined data from chloroplast DNA markers (trnLF region and trnH-psbA spacer) to elucidate the phylogeography of S. perennis in Europe. Plants were collected from 28 populations in different locations in the lowlands and mountainous areas of Europe (e.g., the Carpathians, Sudetes, Bohemian Forest and Alps). cDNA was analysed to detect the genetic relationship between specimens from different locations. RESULTS: A total of 20 haplotypes were identified across the dataset. They were characterised by a high level of genetic variability but showed a lack of phylogeographical structure. This pattern may be the result of repeated recolonization and expansion from several areas. Such genetic differentiation may also be attributed to the relatively long-term isolation of S. perennis in Pleistocene refugia in Europe, which resulted in independent separation of different cpDNA phylogenetic lineages and variation in the nucleotide composition of cpDNA. DISCUSSION: The lack of strong phylogeographical structure makes it impossible to indicate the centre of haplotype diversity; however, refugia located in the Carpathians, Sudetes or Alps are the most probable sites where S. perennis existed in Europe. This lack of structure may also indicate a high level of gene flow in times when the landscape and fen systems were not fragmented in numerous geographically-isolated populations. This makes it difficult to speculate about the relationships between Asiatic and European plant populations and the origin and distribution of this species in Europe. Today, it seems to be restricted due to the occurrence of plants which clearly reflects the genetic variability from the ancient period.

7.
PLoS One ; 12(3): e0174496, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28358825

RESUMO

The eastern part of the Pamir Mountains, located in Central Asia, is characterized by great climatic continentality and aridity. Wetlands developed in this hostile region are restricted to spring areas, terraces of shallow lakes or floodplains along rivers, and provide diversified ecosystem services e.g. as water reservoirs, refugia for rare species and pastures for domestic cattle. These ecosystems are particularly susceptible to climate changes, that in the Pamir Mountains result in increased temperatures, intense permafrost/glacial melt and alterations of precipitation patterns. Climatic changes affect pasture management in the mountains, causing overutilization of sites located at lower elevations. Thus, both climate and man-induced disturbances may violate the existing ecological equilibrium in high-mountain wetlands of the Eastern Pamir, posing a serious risk to their biodiversity and to food security of the local population. In this context, we sought to assess how environmental drivers (with special focus on soil features and potential water sources) shape the distribution and diversity of halophytic plant communities developed in valleys in the Eastern Pamir. This task was completed by means of a vegetation survey and comprehensive analyses of habitat conditions. The lake terraces and floodplains studied were covered by a repetitive mosaic of plant communities determined by differences in soil moisture and salinity. On lower, wetter sites, this patchwork was formed by Blysmus rufus dominated salt marshes, saline small sedge meadows and saline meadows with Kobresia royleana and Primula pamirica; and on drier, elevated sites, by endemic grasslands with Hordeum brevisubulatum and Puccinellia species and patches of xerohalophytic vegetation. Continuous instability of water sources and summer droughts occurring in the Pamir Mountains may lead to significant structural and functional transformations of described wetland ecosystems. Species more tolerant to decreased soil moisture and/or increased soil salinity will expand, leading to alterations of ecosystem services provided by the Pamirs' wetlands. The described research will help to assess the current state of the wetlands and to predict directions of their future changes.


Assuntos
Cyperaceae/crescimento & desenvolvimento , Ecossistema , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Água , Cyperaceae/metabolismo , Secas , Lagos , Rios , Salinidade , Plantas Tolerantes a Sal/metabolismo , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA