Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
JHEP Rep ; 5(5): 100691, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153687

RESUMO

Background & Aims: ß-catenin is a well-known effector of the Wnt pathway, and a key player in cadherin-mediated cell adhesion. Oncogenic mutations of ß-catenin are very frequent in paediatric liver primary tumours. Those mutations are mostly heterozygous, which allows the co-expression of wild-type (WT) and mutated ß-catenins in tumour cells. We investigated the interplay between WT and mutated ß-catenins in liver tumour cells, and searched for new actors of the ß-catenin pathway. Methods: Using an RNAi strategy in ß-catenin-mutated hepatoblastoma (HB) cells, we dissociated the structural and transcriptional activities of ß-catenin, which are carried mainly by WT and mutated proteins, respectively. Their impact was characterised using transcriptomic and functional analyses. We studied mice that develop liver tumours upon activation of ß-catenin in hepatocytes (APCKO and ß-cateninΔexon3 mice). We used transcriptomic data from mouse and human HB specimens, and used immunohistochemistry to analyse samples. Results: We highlighted an antagonistic role of WT and mutated ß-catenins with regard to hepatocyte differentiation, as attested by alterations in the expression of hepatocyte markers and the formation of bile canaliculi. We characterised fascin-1 as a transcriptional target of mutated ß-catenin involved in tumour cell differentiation. Using mouse models, we found that fascin-1 is highly expressed in undifferentiated tumours. Finally, we found that fascin-1 is a specific marker of primitive cells including embryonal and blastemal cells in human HBs. Conclusions: Fascin-1 expression is linked to a loss of differentiation and polarity of hepatocytes. We present fascin-1 as a previously unrecognised factor in the modulation of hepatocyte differentiation associated with ß-catenin pathway alteration in the liver, and as a new potential target in HB. Impact and implications: The FSCN1 gene, encoding fascin-1, was reported to be a metastasis-related gene in various cancers. Herein, we uncover its expression in poor-prognosis hepatoblastomas, a paediatric liver cancer. We show that fascin-1 expression is driven by the mutated beta-catenin in liver tumour cells. We provide new insights on the impact of fascin-1 expression on tumour cell differentiation. We highlight fascin-1 as a marker of immature cells in mouse and human hepatoblastomas.

2.
Cancer Gene Ther ; 29(5): 437-444, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35256752

RESUMO

Rnd3/RhoE is an atypical Rho GTPase family member, known to be deregulated in many types of cancer. Previously, we showed that RND3 expression is downregulated in hepatocellular carcinoma (HCC) cell lines and tissues. In cancer cells, Rnd3 is involved in the regulation of cell proliferation and cell invasion. The implication of Rnd3 in HCC invasion was importantly studied whereas its role in cell growth needs further investigation. Thus, in this work, we aimed to better understand the impact of Rnd3 on tumor hepatocyte proliferation. Our results indicate that the silencing of RND3 induces a cell growth arrest both in vitro in 2D and 3D culture conditions and in vivo in tumor xenografts. The growth alteration after RND3 silencing in HCC cells is not due to an increase of cell death but to the induction of senescence. This RND3 knockdown-mediated phenomenon is dependent on the decrease of hTERT expression. Interestingly, after re-expression of RND3, these cells are able to bypass senescence and regain the ability to proliferate, with a re-expression of hTERT. Given that a low expression of Rnd3 is linked to the presence of satellite nodules in HCC, the transient senescence state observed might play a role in cancer progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Neoplasias Hepáticas/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
3.
Mol Cancer Res ; 14(11): 1033-1044, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27555595

RESUMO

Rho-GTPases are members of the Ras superfamily of small GTPases and are general modulators of important cellular processes in tumor biology such as migration and proliferation. Among these proteins, Rnd3/RhoE, an atypical Rho-GTPase devoid of GTP hydrolytic activity, has recently been studied for its putative role in tumorigenesis. Indeed, Rnd3 is implicated in processes, such as proliferation and migration, whose deregulation is linked to cancer development and metastasis. The aim of this review is to provide an overview of the data surrounding Rnd3 deregulation in cancers, its origin, and consequences. Presented here is a comprehensive account of the expression status and biological output obtained in prostate, liver, stomach, colon, lung, and brain cancers as well as in melanoma and squamous cell carcinoma. Although there appears to be no general consensus about Rnd3 expression in cancers as this protein is differently altered according to the tumor context, these alterations overwhelmingly favor a protumorigenic role. Thus, depending on the tumor type, it may behave either as a tumor suppressor or as a tumor promoter. Importantly, the deregulation of Rnd3, in most cases, is linked to patient poor outcome. IMPLICATIONS: Rnd3 has prognostic marker potential as exemplified in lung cancers and Rnd3 or Rnd3-associated signaling pathways may represent a new putative therapeutic target. Mol Cancer Res; 14(11); 1033-44. ©2016 AACR.


Assuntos
Neoplasias Pulmonares/patologia , Proteínas rho de Ligação ao GTP/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Especificidade de Órgãos , Prognóstico
4.
Cell Adh Migr ; 8(3): 280-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24840388

RESUMO

Invadosomes are actin-based structures involved in extracellular-matrix degradation. Invadosomes, either known as podosomes or invadopodia, are found in an increasing number of cell types. Moreover, their overall organization and molecular composition may vary from one cell type to the other. Some are constitutive such as podosomes in hematopoietic cells whereas others are inducible. However, they share the same feature, their ability to interact and to degrade the extracellular matrix. Based on the literature and our own experiments, the aim of this study was to establish a minimal molecular definition of active invadosomes. We first highlighted that Cdc42 is the key RhoGTPase involved in invadosome formation in all described models. Using different cellular models, such as NIH-3T3, HeLa, and endothelial cells, we demonstrated that overexpression of an active form of Cdc42 is sufficient to form invadosome actin cores. Therefore, active Cdc42 must be considered not only as an inducer of filopodia, but also as an inducer of invadosomes. Depending on the expression level of Tks5, these Cdc42-dependent actin cores were endowed or not with a proteolytic activity. In fact, Tks5 overexpression rescued this activity in Tks5 low expressing cells. We thus described the adaptor protein Tks5 as a major actor of the invadosome degradation function. Surprisingly, we found that Src kinases are not always required for invadosome formation and function. These data suggest that even if Src family members are the principal kinases involved in the majority of invadosomes, it cannot be considered as a common element for all invadosome structures. We thus define a minimal and universal molecular signature of invadosome that includes Cdc42 activity and Tks5 presence in order to drive the actin machinery and the proteolytic activity of these invasive structures.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Movimento Celular/fisiologia , Matriz Extracelular/metabolismo , Fosfoproteínas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Humanos , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Proteínas de Ligação a Fosfato , Fosfoproteínas/genética
5.
J Cell Biol ; 207(4): 517-33, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25422375

RESUMO

Accumulation of type I collagen fibrils in tumors is associated with an increased risk of metastasis. Invadosomes are F-actin structures able to degrade the extracellular matrix. We previously found that collagen I fibrils induced the formation of peculiar linear invadosomes in an unexpected integrin-independent manner. Here, we show that Discoidin Domain Receptor 1 (DDR1), a collagen receptor overexpressed in cancer, colocalizes with linear invadosomes in tumor cells and is required for their formation and matrix degradation ability. Unexpectedly, DDR1 kinase activity is not required for invadosome formation or activity, nor is Src tyrosine kinase. We show that the RhoGTPase Cdc42 is activated on collagen in a DDR1-dependent manner. Cdc42 and its specific guanine nucleotide-exchange factor (GEF), Tuba, localize to linear invadosomes, and both are required for linear invadosome formation. Finally, DDR1 depletion blocked cell invasion in a collagen gel. Altogether, our data uncover an important role for DDR1, acting through Tuba and Cdc42, in proteolysis-based cell invasion in a collagen-rich environment.


Assuntos
Colágeno Tipo I/metabolismo , Proteínas do Citoesqueleto/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina , Actinas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Linhagem Celular Tumoral , Colagenases/metabolismo , Dipeptídeos/farmacologia , Receptor com Domínio Discoidina 1 , Matriz Extracelular/metabolismo , Humanos , Inibidores de Metaloproteinases de Matriz/farmacologia , Invasividade Neoplásica/genética , Interferência de RNA , RNA Interferente Pequeno , Receptores Proteína Tirosina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA