Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 625(7994): 345-351, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057661

RESUMO

Frontotemporal lobar degeneration (FTLD) causes frontotemporal dementia (FTD), the most common form of dementia after Alzheimer's disease, and is often also associated with motor disorders1. The pathological hallmarks of FTLD are neuronal inclusions of specific, abnormally assembled proteins2. In the majority of cases the inclusions contain amyloid filament assemblies of TAR DNA-binding protein 43 (TDP-43) or tau, with distinct filament structures characterizing different FTLD subtypes3,4. The presence of amyloid filaments and their identities and structures in the remaining approximately 10% of FTLD cases are unknown but are widely believed to be composed of the protein fused in sarcoma (FUS, also known as translocated in liposarcoma). As such, these cases are commonly referred to as FTLD-FUS. Here we used cryogenic electron microscopy (cryo-EM) to determine the structures of amyloid filaments extracted from the prefrontal and temporal cortices of four individuals with FTLD-FUS. Surprisingly, we found abundant amyloid filaments of the FUS homologue TATA-binding protein-associated factor 15 (TAF15, also known as TATA-binding protein-associated factor 2N) rather than of FUS itself. The filament fold is formed from residues 7-99 in the low-complexity domain (LCD) of TAF15 and was identical between individuals. Furthermore, we found TAF15 filaments with the same fold in the motor cortex and brainstem of two of the individuals, both showing upper and lower motor neuron pathology. The formation of TAF15 amyloid filaments with a characteristic fold in FTLD establishes TAF15 proteinopathy in neurodegenerative disease. The structure of TAF15 amyloid filaments provides a basis for the development of model systems of neurodegenerative disease, as well as for the design of diagnostic and therapeutic tools targeting TAF15 proteinopathy.


Assuntos
Degeneração Lobar Frontotemporal , Fatores Associados à Proteína de Ligação a TATA , Humanos , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Microscopia Crioeletrônica , Demência Frontotemporal/etiologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/complicações , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Córtex Motor/metabolismo , Córtex Motor/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores Associados à Proteína de Ligação a TATA/ultraestrutura , Lobo Temporal/metabolismo , Lobo Temporal/patologia
2.
Nature ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39260416

RESUMO

Neurodegenerative diseases are characterised by the abnormal filamentous assembly of specific proteins in the central nervous system1. Human genetic studies established a causal role for protein assembly in neurodegeneration2. However, the underlying molecular mechanisms remain largely unknown, which is limiting progress in developing clinical tools for these diseases. Recent advances in electron cryo-microscopy (cryo-EM) have enabled the structures of the protein filaments to be determined from patient brains1. All diseases studied to date have been characterised by the self-assembly of proteins in homomeric amyloid filaments, including that of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) Types A and B3,4. Here, we used cryo-EM to determine filament structures from the brains of individuals with FTLD-TDP Type C, one of the most common forms of sporadic FTLD-TDP. Unexpectedly, the structures revealed that a second protein, annexin A11 (ANXA11), co-assembles with TDP-43 in heteromeric amyloid filaments. The ordered filament fold is formed by TDP-43 residues G282/284-N345 and ANXA11 residues L39-Y74 from their respective low-complexity domains (LCDs). Regions of TDP-43 and ANXA11 previously implicated in protein-protein interactions form an extensive hydrophobic interface at the centre of the filament fold. Immunoblots of the filaments revealed that the majority of ANXA11 exists as a ~22 kDa N-terminal fragment (NTF) lacking the annexin core domain. Immunohistochemistry of brain sections showed the co-localisation of ANXA11 and TDP-43 in inclusions, redefining the histopathology of FTLD-TDP Type C. This work establishes a central role for ANXA11 in FTLD-TDP Type C. The unprecedented formation of heteromeric amyloid filaments in human brain revises our understanding of amyloid assembly and may be of significance for the pathogenesis of neurodegenerative diseases.

3.
Nature ; 620(7975): 898-903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532939

RESUMO

The abnormal assembly of TAR DNA-binding protein 43 (TDP-43) in neuronal and glial cells characterizes nearly all cases of amyotrophic lateral sclerosis (ALS) and around half of cases of frontotemporal lobar degeneration (FTLD)1,2. A causal role for TDP-43 assembly in neurodegeneration is evidenced by dominantly inherited missense mutations in TARDBP, the gene encoding TDP-43, that promote assembly and give rise to ALS and FTLD3-7. At least four types (A-D) of FTLD with TDP-43 pathology (FTLD-TDP) are defined by distinct brain distributions of assembled TDP-43 and are associated with different clinical presentations of frontotemporal dementia8. We previously showed, using cryo-electron microscopy, that TDP-43 assembles into amyloid filaments in ALS and type B FTLD-TDP9. However, the structures of assembled TDP-43 in FTLD without ALS remained unknown. Here we report the cryo-electron microscopy structures of assembled TDP-43 from the brains of three individuals with the most common type of FTLD-TDP, type A. TDP-43 formed amyloid filaments with a new fold that was the same across individuals, indicating that this fold may characterize type A FTLD-TDP. The fold resembles a chevron badge and is unlike the double-spiral-shaped fold of ALS and type B FTLD-TDP, establishing that distinct filament folds of TDP-43 characterize different neurodegenerative conditions. The structures, in combination with mass spectrometry, led to the identification of two new post-translational modifications of assembled TDP-43, citrullination and monomethylation of R293, and indicate that they may facilitate filament formation and observed structural variation in individual filaments. The structures of TDP-43 filaments from type A FTLD-TDP will guide mechanistic studies of TDP-43 assembly, as well as the development of diagnostic and therapeutic compounds for TDP-43 proteinopathies.


Assuntos
Proteínas de Ligação a DNA , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Citrulinação , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/classificação , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Metilação
4.
EMBO J ; 43(13): 2813-2833, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38778155

RESUMO

Although costly to maintain, protein homeostasis is indispensable for normal cellular function and long-term health. In mammalian cells and tissues, daily variation in global protein synthesis has been observed, but its utility and consequences for proteome integrity are not fully understood. Using several different pulse-labelling strategies, here we gain direct insight into the relationship between protein synthesis and abundance proteome-wide. We show that protein degradation varies in-phase with protein synthesis, facilitating rhythms in turnover rather than abundance. This results in daily consolidation of proteome renewal whilst minimising changes in composition. Coupled rhythms in synthesis and turnover are especially salient to the assembly of macromolecular protein complexes, particularly the ribosome, the most abundant species of complex in the cell. Daily turnover and proteasomal degradation rhythms render cells and mice more sensitive to proteotoxic stress at specific times of day, potentially contributing to daily rhythms in the efficacy of proteasomal inhibitors against cancer. Our findings suggest that circadian rhythms function to minimise the bioenergetic cost of protein homeostasis through temporal consolidation of protein turnover.


Assuntos
Ritmo Circadiano , Proteoma , Animais , Ritmo Circadiano/fisiologia , Proteoma/metabolismo , Camundongos , Biossíntese de Proteínas , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ribossomos/metabolismo , Proteólise , Proteostase , Camundongos Endogâmicos C57BL
5.
EMBO J ; 41(1): e108883, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34842284

RESUMO

The daily organisation of most mammalian cellular functions is attributed to circadian regulation of clock-controlled protein expression, driven by daily cycles of CRYPTOCHROME-dependent transcriptional feedback repression. To test this, we used quantitative mass spectrometry to compare wild-type and CRY-deficient fibroblasts under constant conditions. In CRY-deficient cells, we found that temporal variation in protein, phosphopeptide, and K+ abundance was at least as great as wild-type controls. Most strikingly, the extent of temporal variation within either genotype was much smaller than overall differences in proteome composition between WT and CRY-deficient cells. This proteome imbalance in CRY-deficient cells and tissues was associated with increased susceptibility to proteotoxic stress, which impairs circadian robustness, and may contribute to the wide-ranging phenotypes of CRY-deficient mice. Rather than generating large-scale daily variation in proteome composition, we suggest it is plausible that the various transcriptional and post-translational functions of CRY proteins ultimately act to maintain protein and osmotic homeostasis against daily perturbation.


Assuntos
Ritmo Circadiano/fisiologia , Criptocromos/metabolismo , Proteostase , Animais , Criptocromos/deficiência , Transporte de Íons , Camundongos , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/metabolismo , Proteômica , Reprodutibilidade dos Testes , Estresse Fisiológico , Fatores de Tempo
6.
Acta Neuropathol ; 145(3): 325-333, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611124

RESUMO

The Arctic mutation, encoding E693G in the amyloid precursor protein (APP) gene [E22G in amyloid-ß (Aß)], causes dominantly inherited Alzheimer's disease. Here, we report the high-resolution cryo-EM structures of Aß filaments from the frontal cortex of a previously described case (AßPParc1) with the Arctic mutation. Most filaments consist of two pairs of non-identical protofilaments that comprise residues V12-V40 (human Arctic fold A) and E11-G37 (human Arctic fold B). They have a substructure (residues F20-G37) in common with the folds of type I and type II Aß42. When compared to the structures of wild-type Aß42 filaments, there are subtle conformational changes in the human Arctic folds, because of the lack of a side chain at G22, which may strengthen hydrogen bonding between mutant Aß molecules and promote filament formation. A minority of Aß42 filaments of type II was also present, as were tau paired helical filaments. In addition, we report the cryo-EM structures of Aß filaments with the Arctic mutation from mouse knock-in line AppNL-G-F. Most filaments are made of two identical mutant protofilaments that extend from D1 to G37 (AppNL-G-F murine Arctic fold). In a minority of filaments, two dimeric folds pack against each other in an anti-parallel fashion. The AppNL-G-F murine Arctic fold differs from the human Arctic folds, but shares some substructure.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Microscopia Crioeletrônica , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Mutação/genética , Camundongos Transgênicos
7.
bioRxiv ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38979278

RESUMO

Neurodegenerative diseases are characterised by the abnormal filamentous assembly of specific proteins in the central nervous system 1 . Human genetic studies established a causal role for protein assembly in neurodegeneration 2 . However, the underlying molecular mechanisms remain largely unknown, which is limiting progress in developing clinical tools for these diseases. Recent advances in electron cryo-microscopy (cryo-EM) have enabled the structures of the protein filaments to be determined from patient brains 1 . All diseases studied to date have been characterised by the self-assembly of a single intracellular protein in homomeric amyloid filaments, including that of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) Types A and B 3,4 . Here, we used cryo-EM to determine filament structures from the brains of individuals with FTLD-TDP Type C, one of the most common forms of sporadic FTLD-TDP. Unexpectedly, the structures revealed that a second protein, annexin A11 (ANXA11), co-assembles with TDP-43 in heteromeric amyloid filaments. The ordered filament fold is formed by TDP-43 residues G282/284-N345 and ANXA11 residues L39-L74 from their respective low-complexity domains (LCDs). Regions of TDP-43 and ANXA11 previously implicated in protein-protein interactions form an extensive hydrophobic interface at the centre of the filament fold. Immunoblots of the filaments revealed that the majority of ANXA11 exists as a ∼22 kDa N-terminal fragment (NTF) lacking the annexin core domain. Immunohistochemistry of brain sections confirmed the co-localisation of ANXA11 and TDP-43 in inclusions, redefining the histopathology of FTLD-TDP Type C. This work establishes a central role for ANXA11 in FTLD-TDP Type C. The unprecedented formation of heteromeric amyloid filaments in human brain revises our understanding of amyloid assembly and may be of significance for the pathogenesis of neurodegenerative diseases.

8.
J Cell Biol ; 178(4): 575-81, 2007 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-17682048

RESUMO

Lgl (lethal giant larvae) plays an important role in cell polarity. Atypical protein kinase C (aPKC) binds to and phosphorylates Lgl, and the phosphorylation negatively regulates Lgl activity. In this study, we identify p32 as a novel Lgl binding protein that directly binds to a domain on mammalian Lgl2 (mLgl2), which contains the aPKC phosphorylation site. p32 also binds to PKCzeta, and the three proteins form a transient ternary complex. When p32 is bound, PKCzeta is stimulated to phosphorylate mLgl2 more efficiently. p32 overexpression in Madin-Darby canine kidney cells cultured in a 3D matrix induces an expansion of the actin-enriched apical membrane domain and disrupts cell polarity. Addition of PKCzeta inhibitor blocks apical actin accumulation, which is rescued by p32 overexpression. p32 knockdown by short hairpin RNA also induces cell polarity defects. Collectively, our data indicate that p32 is a novel regulator of cell polarity that forms a complex with mLgl2 and aPKC and enhances aPKC activity.


Assuntos
Polaridade Celular , Proteína Quinase C/metabolismo , beta Carioferinas/metabolismo , Animais , Linhagem Celular , Cães , Humanos , Fosforilação , Estrutura Terciária de Proteína , Ratos
9.
Science ; 375(6577): 167-172, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35025654

RESUMO

Filament assembly of amyloid-ß peptides ending at residue 42 (Aß42) is a central event in Alzheimer's disease. Here, we report the cryo­electron microscopy (cryo-EM) structures of Aß42 filaments from human brains. Two structurally related S-shaped protofilament folds give rise to two types of filaments. Type I filaments were found mostly in the brains of individuals with sporadic Alzheimer's disease, and type II filaments were found in individuals with familial Alzheimer's disease and other conditions. The structures of Aß42 filaments from the brain differ from those of filaments assembled in vitro. By contrast, in AppNL-F knock-in mice, Aß42 deposits were made of type II filaments. Knowledge of Aß42 filament structures from human brains may lead to the development of inhibitors of assembly and improved imaging agents.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/ultraestrutura , Química Encefálica , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/ultraestrutura , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Peptídeos beta-Amiloides/genética , Animais , Microscopia Crioeletrônica , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Modelos Moleculares , Fragmentos de Peptídeos/genética , Conformação Proteica , Conformação Proteica em Folha beta , Domínios Proteicos , Dobramento de Proteína
10.
Commun Biol ; 4(1): 1147, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593975

RESUMO

The cellular landscape changes dramatically over the course of a 24 h day. The proteome responds directly to daily environmental cycles and is additionally regulated by the circadian clock. To quantify the relative contribution of diurnal versus circadian regulation, we mapped proteome dynamics under light:dark cycles compared with constant light. Using Ostreococcus tauri, a prototypical eukaryotic cell, we achieved 85% coverage, which allowed an unprecedented insight into the identity of proteins that facilitate rhythmic cellular functions. The overlap between diurnally- and circadian-regulated proteins was modest and these proteins exhibited different phases of oscillation between the two conditions. Transcript oscillations were generally poorly predictive of protein oscillations, in which a far lower relative amplitude was observed. We observed coordination between the rhythmic regulation of organelle-encoded proteins with the nuclear-encoded proteins that are targeted to organelles. Rhythmic transmembrane proteins showed a different phase distribution compared with rhythmic soluble proteins, indicating the existence of a circadian regulatory process specific to the biogenesis and/or degradation of membrane proteins. Our observations argue that the cellular spatiotemporal proteome is shaped by a complex interaction between intrinsic and extrinsic regulatory factors through rhythmic regulation at the transcriptional as well as post-transcriptional, translational, and post-translational levels.


Assuntos
Proteínas de Algas/genética , Clorófitas/fisiologia , Meio Ambiente , Periodicidade , Proteoma/genética , Proteínas de Algas/metabolismo , Clorófitas/genética , Proteoma/metabolismo , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA