Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 7: 78, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19922616

RESUMO

BACKGROUND: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. RESULTS: Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. CONCLUSION: We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer.


Assuntos
Burkholderia pseudomallei/genética , Transferência Genética Horizontal/fisiologia , Genes Bacterianos , Genética Populacional , Austrália , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Humanos , Epidemiologia Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Homologia de Sequência
2.
mBio ; 5(6): e01721, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25370488

RESUMO

UNLABELLED: For centuries, cholera has been one of the most feared diseases. The causative agent Vibrio cholerae is a waterborne Gram-negative enteric pathogen eliciting a severe watery diarrheal disease. In October 2010, the seventh pandemic reached Haiti, a country that had not experienced cholera for more than a century. By using whole-genome sequence typing and mapping strategies of 116 serotype O1 strains from global sources, including 44 Haitian genomes, we present a detailed reconstructed evolutionary history of the seventh pandemic with a focus on the Haitian outbreak. We catalogued subtle genomic alterations at the nucleotide level in the genome core and architectural rearrangements from whole-genome map comparisons. Isolates closely related to the Haitian isolates caused several recent outbreaks in southern Asia. This study provides evidence for a single-source introduction of cholera from Nepal into Haiti followed by rapid, extensive, and continued clonal expansion. The phylogeographic patterns in both southern Asia and Haiti argue for the rapid dissemination of V. cholerae across the landscape necessitating real-time surveillance efforts to complement the whole-genome epidemiological analysis. As eradication efforts move forward, phylogeographic knowledge will be important for identifying persistent sources and monitoring success at regional levels. The results of molecular and epidemiological analyses of this outbreak suggest that an indigenous Haitian source of V. cholerae is unlikely and that an indigenous source has not contributed to the genomic evolution of this clade. IMPORTANCE: In this genomic epidemiology study, we have applied high-resolution whole-genome-based sequence typing methodologies on a comprehensive set of genome sequences that have become available in the aftermath of the Haitian cholera epidemic. These sequence resources enabled us to reassess the degree of genomic heterogeneity within the Vibrio cholerae O1 serotype and to refine boundaries and evolutionary relationships. The established phylogenomic framework showed how outbreak isolates fit into the global phylogeographic patterns compared to a comprehensive globally and temporally diverse strain collection and provides strong molecular evidence that points to a nonindigenous source of the 2010 Haitian cholera outbreak and refines epidemiological standards used in outbreak investigations for outbreak inclusion/exclusion following the concept of genomic epidemiology. The generated phylogenomic data have major public health relevance in translating sequence-based information to assist in future diagnostic, epidemiological, surveillance, and forensic studies of cholera.


Assuntos
Cólera/epidemiologia , Cólera/microbiologia , Epidemias , Genoma Bacteriano , Tipagem Molecular , Vibrio cholerae O1/classificação , Vibrio cholerae O1/genética , Cólera/transmissão , Genótipo , Haiti/epidemiologia , Epidemiologia Molecular , Nepal , Filogeografia , Análise de Sequência de DNA , Vibrio cholerae O1/isolamento & purificação
3.
PLoS One ; 9(7): e102651, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25047912

RESUMO

Sequence analyses and subtyping of Bacillus anthracis strains from Georgia reveal a single distinct lineage (Aust94) that is ecologically established. Phylogeographic analysis and comparisons to a global collection reveals a clade that is mostly restricted to Georgia. Within this clade, many groups are found around the country, however at least one subclade is only found in the eastern part. This pattern suggests that dispersal into and out of Georgia has been rare and despite historical dispersion within the country, for at least for one lineage, current spread is limited.


Assuntos
Antraz/microbiologia , Bacillus anthracis/genética , Georgia , Humanos , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA