Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 622(7983): 574-583, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37369348

RESUMO

Investigating human development is a substantial scientific challenge due to the technical and ethical limitations of working with embryonic samples. In the face of these difficulties, stem cells have provided an alternative to experimentally model inaccessible stages of human development in vitro1-13. Here we show that human pluripotent stem cells can be triggered to self-organize into three-dimensional structures that recapitulate some key spatiotemporal events of early human post-implantation embryonic development. Our system reproducibly captures spontaneous differentiation and co-development of embryonic epiblast-like and extra-embryonic hypoblast-like lineages, establishes key signalling hubs with secreted modulators and undergoes symmetry breaking-like events. Single-cell transcriptomics confirms differentiation into diverse cell states of the perigastrulating human embryo14,15 without establishing placental cell types, including signatures of post-implantation epiblast, amniotic ectoderm, primitive streak, mesoderm, early extra-embryonic endoderm, as well as initial yolk sac induction. Collectively, our system captures key features of human embryonic development spanning from Carnegie stage16 4-7, offering a reproducible, tractable and scalable experimental platform to understand the basic cellular and molecular mechanisms that underlie human development, including new opportunities to dissect congenital pathologies with high throughput.


Assuntos
Linhagem da Célula , Implantação do Embrião , Desenvolvimento Embrionário , Células-Tronco Pluripotentes , Feminino , Humanos , Gravidez , Diferenciação Celular , Camadas Germinativas/citologia , Camadas Germinativas/enzimologia , Células-Tronco Embrionárias Humanas/citologia , Placenta/citologia , Células-Tronco Pluripotentes/citologia , Linha Primitiva/citologia , Linha Primitiva/embriologia , Saco Vitelino/citologia , Saco Vitelino/embriologia
2.
Nucleic Acids Res ; 51(7): 3078-3093, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36727488

RESUMO

During oocyte development in mice, transcripts accumulate in the growth phase and are subsequently degraded during maturation. At the transition point between growth and maturation, oocytes have an intact nucleus or germinal vesicle (GV), and terminal uridylation labels RNA for degradation in meiosis I. By profiling the transcriptome using single-oocyte long-read PacBio RNA sequencing, we document that a small cohort of mRNAs are polyadenylated after terminal uridylation in GV oocytes [designated uridylated-poly(A) RNA]. Because DIS3L2 ribonuclease is known to degrade uridylated transcripts, we established oocyte-specific Dis3l2 knockout mice (Dis3l2cKO). Upon DIS3L2 depletion, uridylated-poly(A) RNAs remain intact which increases their abundance, and they predominate in the transcriptome of Dis3l2cKO oocytes. The abundance of uridylated-poly(A) RNA in Dis3l2cKO oocytes arises not only from insufficient degradation, but also from the stabilizing effect of subsequent polyadenylation. Uridylated-poly(A) RNAs have shorter poly(A) tails and their translation activity decreases in Dis3l2cKO oocytes. Almost all Dis3l2cKO oocytes arrest at the GV stage, and female mice are infertile. Our study demonstrates multiple fates for RNA after terminal uridylation and highlights the role of DIS3L2 ribonuclease in safeguarding the transcriptome and ensuring female fertility.


Assuntos
Exorribonucleases , Fertilidade , Animais , Feminino , Camundongos , Oócitos/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Exorribonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA