Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 161(6): 1400-12, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046441

RESUMO

It is generally assumed that mRNAs undergoing translation are protected from decay. Here, we show that mRNAs are, in fact, co-translationally degraded. This is a widespread and conserved process affecting most genes, where 5'-3' transcript degradation follows the last translating ribosome, producing an in vivo ribosomal footprint. By sequencing the ends of 5' phosphorylated mRNA degradation intermediates, we obtain a genome-wide drug-free measurement of ribosome dynamics. We identify general translation termination pauses in both normal and stress conditions. In addition, we describe novel codon-specific ribosomal pausing sites in response to oxidative stress that are dependent on the RNase Rny1. Our approach is simple and straightforward and does not require the use of translational inhibitors or in vitro RNA footprinting that can alter ribosome protection patterns.


Assuntos
Biossíntese de Proteínas , Estabilidade de RNA , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Estudo de Associação Genômica Ampla , Estresse Oxidativo , Terminação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribonucleases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
2.
Mol Cell ; 74(1): 196-211.e11, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30799147

RESUMO

The compendium of RNA-binding proteins (RBPs) has been greatly expanded by the development of RNA-interactome capture (RIC). However, it remained unknown if the complement of RBPs changes in response to environmental perturbations and whether these rearrangements are important. To answer these questions, we developed "comparative RIC" and applied it to cells challenged with an RNA virus called sindbis (SINV). Over 200 RBPs display differential interaction with RNA upon SINV infection. These alterations are mainly driven by the loss of cellular mRNAs and the emergence of viral RNA. RBPs stimulated by the infection redistribute to viral replication factories and regulate the capacity of the virus to infect. For example, ablation of XRN1 causes cells to be refractory to SINV, while GEMIN5 moonlights as a regulator of SINV gene expression. In summary, RNA availability controls RBP localization and function in SINV-infected cells.


Assuntos
Células Epiteliais/virologia , Perfilação da Expressão Gênica/métodos , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Sindbis virus/genética , Transcriptoma , Neoplasias do Colo do Útero/virologia , Regiões 5' não Traduzidas , Sítios de Ligação , Células Epiteliais/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Feminino , Regulação Viral da Expressão Gênica , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN , Sindbis virus/crescimento & desenvolvimento , Sindbis virus/metabolismo , Sindbis virus/patogenicidade , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Replicação Viral
3.
Proc Natl Acad Sci U S A ; 121(7): e2310479121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38335255

RESUMO

Metabolic reprogramming is critical during clear cell renal cell carcinoma (ccRCC) tumorigenesis, manifested by accumulation of lipid droplets (LDs), organelles that have emerged as new hallmarks of cancer. Yet, regulation of their biogenesis is still poorly understood. Here, we demonstrate that MYC inhibition in ccRCC cells lacking the von Hippel Lindau (VHL) gene leads to increased triglyceride content potentiating LD formation in a glutamine-dependent manner. Importantly, the concurrent inhibition of MYC signaling and glutamine metabolism prevented LD accumulation and reduced tumor burden in vivo. Furthermore, we identified the hypoxia-inducible lipid droplet-associated protein (HILPDA) as the key driver for induction of MYC-driven LD accumulation and demonstrated that conversely, proliferation, LD formation, and tumor growth are impaired upon its downregulation. Finally, analysis of ccRCC tissue as well as healthy renal control samples postulated HILPDA as a specific ccRCC biomarker. Together, these results provide an attractive approach for development of alternative therapeutic interventions for the treatment of this type of renal cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Gotículas Lipídicas , Proteínas Proto-Oncogênicas c-myc , Humanos , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Neoplasias Renais/patologia , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Regulação para Cima , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
4.
Mol Syst Biol ; 20(5): 506-520, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491213

RESUMO

Codon optimality is a major determinant of mRNA translation and degradation rates. However, whether and through which mechanisms its effects are regulated remains poorly understood. Here we show that codon optimality associates with up to 2-fold change in mRNA stability variations between human tissues, and that its effect is attenuated in tissues with high energy metabolism and amplifies with age. Mathematical modeling and perturbation data through oxygen deprivation and ATP synthesis inhibition reveal that cellular energy variations non-uniformly alter the effect of codon usage. This new mode of codon effect regulation, independent of tRNA regulation, provides a fundamental mechanistic link between cellular energy metabolism and eukaryotic gene expression.


Assuntos
Códon , Metabolismo Energético , Estabilidade de RNA , RNA Mensageiro , Humanos , Metabolismo Energético/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Códon/genética , Uso do Códon , Biossíntese de Proteínas , RNA de Transferência/genética , RNA de Transferência/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação da Expressão Gênica
5.
Yeast ; 41(7): 458-472, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38874348

RESUMO

The yeast Saccharomyces cerevisiae and most eukaryotes carry two 5' → 3' exoribonuclease paralogs. In yeast, they are called Xrn1, which shuttles between the nucleus and the cytoplasm, and executes major cytoplasmic messenger RNA (mRNA) decay, and Rat1, which carries a strong nuclear localization sequence (NLS) and localizes to the nucleus. Xrn1 is 30% identical to Rat1 but has an extra ~500 amino acids C-terminal extension. In the cytoplasm, Xrn1 can degrade decapped mRNAs during the last round of translation by ribosomes, a process referred to as "cotranslational mRNA decay." The division of labor between the two enzymes is still enigmatic and serves as a paradigm for the subfunctionalization of many other paralogs. Here we show that Rat1 is capable of functioning in cytoplasmic mRNA decay, provided that Rat1 remains cytoplasmic due to its NLS disruption (cRat1). This indicates that the physical segregation of the two paralogs plays roles in their specific functions. However, reversing segregation is not sufficient to fully complement the Xrn1 function. Specifically, cRat1 can partially restore the cell volume, mRNA stability, the proliferation rate, and 5' → 3' decay alterations that characterize xrn1Δ cells. Nevertheless, cotranslational decay is only slightly complemented by cRat1. The use of the AlphaFold prediction for cRat1 and its subsequent docking with the ribosome complex and the sequence conservation between cRat1 and Xrn1 suggest that the tight interaction with the ribosome observed for Xrn1 is not maintained in cRat1. Adding the Xrn1 C-terminal domain to Rat1 does not improve phenotypes, which indicates that lack of the C-terminal is not responsible for partial complementation. Overall, during evolution, it appears that the two paralogs have acquired specific characteristics to make functional partitioning beneficial.


Assuntos
Exorribonucleases , Estabilidade de RNA , RNA Mensageiro , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Exorribonucleases/metabolismo , Exorribonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Citoplasma/metabolismo , Biossíntese de Proteínas
6.
Nucleic Acids Res ; 49(1): 206-220, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330942

RESUMO

Proteostasis needs to be tightly controlled to meet the cellular demand for correctly de novo folded proteins and to avoid protein aggregation. While a coupling between translation rate and co-translational folding, likely involving an interplay between the ribosome and its associated chaperones, clearly appears to exist, the underlying mechanisms and the contribution of ribosomal proteins remain to be explored. The ribosomal protein uL3 contains a long internal loop whose tip region is in close proximity to the ribosomal peptidyl transferase center. Intriguingly, the rpl3[W255C] allele, in which the residue making the closest contact to this catalytic site is mutated, affects diverse aspects of ribosome biogenesis and function. Here, we have uncovered, by performing a synthetic lethal screen with this allele, an unexpected link between translation and the folding of nascent proteins by the ribosome-associated Ssb-RAC chaperone system. Our results reveal that uL3 and Ssb-RAC cooperate to prevent 80S ribosomes from piling up within the 5' region of mRNAs early on during translation elongation. Together, our study provides compelling in vivo evidence for a functional connection between peptide bond formation at the peptidyl transferase center and chaperone-assisted de novo folding of nascent polypeptides at the solvent-side of the peptide exit tunnel.


Assuntos
Chaperonas Moleculares/fisiologia , Complexos Multiproteicos/fisiologia , Elongação Traducional da Cadeia Peptídica/fisiologia , Dobramento de Proteína , Proteostase/fisiologia , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Alelos , Mutação com Perda de Função , Chaperonas Moleculares/genética , Mutação de Sentido Incorreto , Peptidil Transferases/fisiologia , Mutação Puntual , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/fisiologia , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203678

RESUMO

RNA pol II assembly occurs in the cytoplasm before translocation of the enzyme to the nucleus. Affecting this assembly influences mRNA transcription in the nucleus and mRNA decay in the cytoplasm. However, very little is known about the consequences on ncRNA synthesis. In this work, we show that impairment of RNA pol II assembly leads to a decrease in cryptic non-coding RNAs (preferentially CUTs and SUTs). This alteration is partially restored upon overcoming the assembly defect. Notably, this drop in ncRNAs is only partially dependent on the nuclear exosome, which suggests a major specific effect of enzyme assembly. Our data also point out a defect in transcription termination, which leads us to propose that CTD phosphatase Rtr1 could be involved in this process.


Assuntos
Exossomos , RNA Polimerase II , Humanos , RNA Polimerase II/genética , Transcrição Gênica , RNA não Traduzido/genética , Translocação Genética
8.
EMBO J ; 37(23)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30373810

RESUMO

Focal deletions occur frequently in the cancer genome. However, the putative tumor-suppressive genes residing within these regions have been difficult to pinpoint. To robustly identify these genes, we implemented a computational approach based on non-negative matrix factorization, NMF, and interrogated the TCGA dataset. This analysis revealed a metagene signature including a small subset of genes showing pervasive hemizygous deletions, reduced expression in cancer patient samples, and nucleolar function. Amid the genes belonging to this signature, we have identified PNRC1, a nuclear receptor coactivator. We found that PNRC1 interacts with the cytoplasmic DCP1α/DCP2 decapping machinery and hauls it inside the nucleolus. PNRC1-dependent nucleolar translocation of the decapping complex is associated with a decrease in the 5'-capped U3 and U8 snoRNA fractions, hampering ribosomal RNA maturation. As a result, PNRC1 ablates the enhanced proliferation triggered by established oncogenes such as RAS and MYC These observations uncover a previously undescribed mechanism of tumor suppression, whereby the cytoplasmic decapping machinery is hauled within nucleoli, tightly regulating ribosomal RNA maturation.


Assuntos
Nucléolo Celular/metabolismo , Proliferação de Células , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , RNA Ribossômico/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Células A549 , Nucléolo Celular/genética , Nucléolo Celular/patologia , Bases de Dados de Ácidos Nucleicos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células HeLa , Humanos , Células MCF-7 , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA Ribossômico/genética , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas ras/genética , Proteínas ras/metabolismo
9.
Genome Res ; 29(12): 1974-1984, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740578

RESUMO

Cryptic transcription is widespread and generates a heterogeneous group of RNA molecules of unknown function. To improve our understanding of cryptic transcription, we investigated their transcription start site (TSS) usage, chromatin organization, and posttranscriptional consequences in Saccharomyces cerevisiae We show that TSSs of chromatin-sensitive internal cryptic transcripts retain comparable features of canonical TSSs in terms of DNA sequence, directionality, and chromatin accessibility. We define the 5' and 3' boundaries of cryptic transcripts and show that, contrary to RNA degradation-sensitive ones, they often overlap with the end of the gene, thereby using the canonical polyadenylation site, and associate to polyribosomes. We show that chromatin-sensitive cryptic transcripts can be recognized by ribosomes and may produce truncated polypeptides from downstream, in-frame start codons. Finally, we confirm the presence of the predicted polypeptides by reanalyzing N-terminal proteomic data sets. Our work suggests that a fraction of chromatin-sensitive internal cryptic promoters initiates the transcription of alternative truncated mRNA isoforms. The expression of these chromatin-sensitive isoforms is conserved from yeast to human, expanding the functional consequences of cryptic transcription and proteome complexity.


Assuntos
Cromatina , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sítio de Iniciação de Transcrição , Cromatina/genética , Cromatina/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade de RNA , RNA Fúngico/biossíntese , RNA Fúngico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Nucleic Acids Res ; 48(18): e104, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32816037

RESUMO

Eukaryotic transcriptomes are complex, involving thousands of overlapping transcripts. The interleaved nature of the transcriptomes limits our ability to identify regulatory regions, and in some cases can lead to misinterpretation of gene expression. To improve the understanding of the overlapping transcriptomes, we have developed an optimized method, TIF-Seq2, able to sequence simultaneously the 5' and 3' ends of individual RNA molecules at single-nucleotide resolution. We investigated the transcriptome of a well characterized human cell line (K562) and identified thousands of unannotated transcript isoforms. By focusing on transcripts which are challenging to be investigated with RNA-Seq, we accurately defined boundaries of lowly expressed unannotated and read-through transcripts putatively encoding fusion genes. We validated our results by targeted long-read sequencing and standard RNA-Seq for chronic myeloid leukaemia patient samples. Taking the advantage of TIF-Seq2, we explored transcription regulation among overlapping units and investigated their crosstalk. We show that most overlapping upstream transcripts use poly(A) sites within the first 2 kb of the downstream transcription units. Our work shows that, by paring the 5' and 3' end of each RNA, TIF-Seq2 can improve the annotation of complex genomes, facilitate accurate assignment of promoters to genes and easily identify transcriptionally fused genes.


Assuntos
Perfilação da Expressão Gênica/métodos , RNA , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Genoma Humano , Humanos , Células K562 , Isoformas de Proteínas/genética
11.
Nucleic Acids Res ; 48(15): 8509-8528, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32710631

RESUMO

The ribonucleolytic exosome complex is central for nuclear RNA degradation, primarily targeting non-coding RNAs. Still, the nuclear exosome could have protein-coding (pc) gene-specific regulatory activities. By depleting an exosome core component, or components of exosome adaptor complexes, we identify ∼2900 transcription start sites (TSSs) from within pc genes that produce exosome-sensitive transcripts. At least 1000 of these overlap with annotated mRNA TSSs and a considerable portion of their transcripts share the annotated mRNA 3' end. We identify two types of pc-genes, both employing a single, annotated TSS across cells, but the first type primarily produces full-length, exosome-sensitive transcripts, whereas the second primarily produces prematurely terminated transcripts. Genes within the former type often belong to immediate early response transcription factors, while genes within the latter are likely transcribed as a consequence of their proximity to upstream TSSs on the opposite strand. Conversely, when genes have multiple active TSSs, alternative TSSs that produce exosome-sensitive transcripts typically do not contribute substantially to overall gene expression, and most such transcripts are prematurely terminated. Our results display a complex landscape of sense transcription within pc-genes and imply a direct role for nuclear RNA turnover in the regulation of a subset of pc-genes.


Assuntos
Exossomos/genética , Genoma Humano/genética , Fases de Leitura Aberta/genética , RNA/genética , Sítio de Iniciação de Transcrição , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Anotação de Sequência Molecular , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA não Traduzido/genética
12.
PLoS Genet ; 15(2): e1007969, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30707695

RESUMO

Progression of RNA polymerase II (RNAPII) transcription relies on the appropriately positioned activities of elongation factors. The resulting profile of factors and chromatin signatures along transcription units provides a "positional information system" for transcribing RNAPII. Here, we investigate a chromatin-based mechanism that suppresses intragenic initiation of RNAPII transcription. We demonstrate that RNAPII transcription across gene promoters represses their function in plants. This repression is characterized by reduced promoter-specific molecular signatures and increased molecular signatures associated with RNAPII elongation. The conserved FACT histone chaperone complex is required for this repression mechanism. Genome-wide Transcription Start Site (TSS) mapping reveals thousands of discrete intragenic TSS positions in fact mutants, including downstream promoters that initiate alternative transcript isoforms. We find that histone H3 lysine 4 mono-methylation (H3K4me1), an Arabidopsis RNAPII elongation signature, is enriched at FACT-repressed intragenic TSSs. Our analyses suggest that FACT is required to repress intragenic TSSs at positions that are in part characterized by elevated H3K4me1 levels. In sum, conserved and plant-specific chromatin features correlate with the co-transcriptional repression of intragenic TSSs. Our insights into TSS repression by RNAPII transcription promise to inform the regulation of alternative transcript isoforms and the characterization of gene regulation through the act of pervasive transcription across eukaryotic genomes.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Sítio de Iniciação de Transcrição , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Código das Histonas/genética , Mutação , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
13.
PLoS Genet ; 14(7): e1007563, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30059503

RESUMO

RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5' end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered.


Assuntos
Pressão Osmótica/fisiologia , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Glicerol-3-Fosfato Desidrogenase (NAD+)/genética , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Ligação Proteica/fisiologia , Biossíntese de Proteínas/fisiologia , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Mol Cell ; 47(2): 267-80, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22683267

RESUMO

Poly(A) (pA) tail binding proteins (PABPs) control mRNA polyadenylation, stability, and translation. In a purified system, S. cerevisiae PABPs, Pab1p and Nab2p, are individually sufficient to provide normal pA tail length. However, it is unknown how this occurs in more complex environments. Here we find that the nuclear exosome subunit Rrp6p counteracts the in vitro and in vivo extension of mature pA tails by the noncanonical pA polymerase Trf4p. Moreover, PABP loading onto nascent pA tails is controlled by Rrp6p; while Pab1p is the major PABP, Nab2p only associates in the absence of Rrp6p. This is because Rrp6p can interact with Nab2p and displace it from pA tails, potentially leading to RNA turnover, as evidenced for certain pre-mRNAs. We suggest that a nuclear mRNP surveillance step involves targeting of Rrp6p by Nab2p-bound pA-tailed RNPs and that pre-mRNA abundance is regulated at this level.


Assuntos
Exorribonucleases/metabolismo , Poli A/química , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Núcleo Celular/metabolismo , Citoplasma/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo , Exossomos/metabolismo , Regulação Fúngica da Expressão Gênica , Modelos Biológicos , Dados de Sequência Molecular , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Poli A/genética , Ligação Proteica , RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
15.
Nat Rev Genet ; 14(12): 880-93, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24217315

RESUMO

Antisense transcription, which was initially considered by many as transcriptional noise, is increasingly being recognized as an important regulator of gene expression. It is widespread among all kingdoms of life and has been shown to influence - either through the act of transcription or through the non-coding RNA that is produced - almost all stages of gene expression, from transcription and translation to RNA degradation. Antisense transcription can function as a fast evolving regulatory switch and a modular scaffold for protein complexes, and it can 'rewire' regulatory networks. The genomic arrangement of antisense RNAs opposite sense genes indicates that they might be part of self-regulatory circuits that allow genes to regulate their own expression.


Assuntos
Interferência de RNA , RNA Antissenso/genética , Transcrição Gênica , Animais , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Cinética , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Nature ; 497(7447): 127-31, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23615609

RESUMO

Transcript function is determined by sequence elements arranged on an individual RNA molecule. Variation in transcripts can affect messenger RNA stability, localization and translation, or produce truncated proteins that differ in localization or function. Given the existence of overlapping, variable transcript isoforms, determining the functional impact of the transcriptome requires identification of full-length transcripts, rather than just the genomic regions that are transcribed. Here, by jointly determining both transcript ends for millions of RNA molecules, we reveal an extensive layer of isoform diversity previously hidden among overlapping RNA molecules. Variation in transcript boundaries seems to be the rule rather than the exception, even within a single population of yeast cells. Over 26 major transcript isoforms per protein-coding gene were expressed in yeast. Hundreds of short coding RNAs and truncated versions of proteins are concomitantly encoded by alternative transcript isoforms, increasing protein diversity. In addition, approximately 70% of genes express alternative isoforms that vary in post-transcriptional regulatory elements, and tandem genes frequently produce overlapping or even bicistronic transcripts. This extensive transcript diversity is generated by a relatively simple eukaryotic genome with limited splicing, and within a genetically homogeneous population of cells. Our findings have implications for genome compaction, evolution and phenotypic diversity between single cells. These data also indicate that isoform diversity as well as RNA abundance should be considered when assessing the functional repertoire of genomes.


Assuntos
Processamento Alternativo/genética , Perfilação da Expressão Gênica , RNA Fúngico/análise , RNA Fúngico/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica/genética , Transcriptoma/genética , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Genoma Fúngico/genética , Genômica , Isoformas de Proteínas/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Sequências Reguladoras de Ácido Ribonucleico/genética
17.
Nucleic Acids Res ; 45(12): 7326-7338, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28549188

RESUMO

eIF5A is an essential protein involved in protein synthesis, cell proliferation and animal development. High eIF5A expression is observed in many tumor types and has been linked to cancer metastasis. Recent studies have shown that eIF5A facilitates the translation elongation of stretches of consecutive prolines. Activated eIF5A binds to the empty E-site of stalled ribosomes, where it is thought to interact with the peptidyl-tRNA situated at the P-site. Here, we report a genome-wide analysis of ribosome stalling in Saccharomyces cerevisiae eIF5A depleted cells using 5Pseq. We confirm that, in the absence of eIF5A, ribosomes stall at proline stretches, and extend previous studies by identifying eIF5A-dependent ribosome pauses at termination and at >200 tripeptide motifs. We show that presence of proline, glycine and charged amino acids at the peptidyl transferase center and at the beginning of the peptide exit tunnel arrest ribosomes in eIF5A-depleted cells. Lack of eIF5A also renders ribosome accumulation at the stop codons. Our data indicate specific protein functional groups under the control of eIF5A, including ER-coupled translation and GTPases in yeast and cytoskeleton organization, collagen metabolism and cell differentiation in humans. Our results support a broad mRNA-specific role of eIF5A in translation and identify the conserved motifs that affect translation elongation from yeast to humans.


Assuntos
Genoma Fúngico , Elongação Traducional da Cadeia Peptídica , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética , Motivos de Aminoácidos , Sítios de Ligação , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fatores de Iniciação de Peptídeos/metabolismo , Prolina/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
18.
Nucleic Acids Res ; 45(16): 9302-9318, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28637236

RESUMO

Ribosome assembly requires the concerted expression of hundreds of genes, which are transcribed by all three nuclear RNA polymerases. Transcription elongation involves dynamic interactions between RNA polymerases and chromatin. We performed a synthetic lethal screening in Saccharomyces cerevisiae with a conditional allele of SPT6, which encodes one of the factors that facilitates this process. Some of these synthetic mutants corresponded to factors that facilitate pre-rRNA processing and ribosome biogenesis. We found that the in vivo depletion of one of these factors, Arb1, activated transcription elongation in the set of genes involved directly in ribosome assembly. Under these depletion conditions, Spt6 was physically targeted to the up-regulated genes, where it helped maintain their chromatin integrity and the synthesis of properly stable mRNAs. The mRNA profiles of a large set of ribosome biogenesis mutants confirmed the existence of a feedback regulatory network among ribosome assembly genes. The transcriptional response in this network depended on both the specific malfunction and the role of the regulated gene. In accordance with our screening, Spt6 positively contributed to the optimal operation of this global network. On the whole, this work uncovers a feedback control of ribosome biogenesis by fine-tuning transcription elongation in ribosome assembly factor-coding genes.


Assuntos
Redes Reguladoras de Genes , Chaperonas de Histonas/genética , Biogênese de Organelas , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Elongação da Transcrição Genética , Fatores de Elongação da Transcrição/genética , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Retroalimentação Fisiológica , Chaperonas de Histonas/metabolismo , Mutação , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Mutações Sintéticas Letais , Fatores de Elongação da Transcrição/metabolismo , Transcriptoma
19.
Nucleic Acids Res ; 44(8): 3643-58, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-26717982

RESUMO

We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay.The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth.


Assuntos
Regulação da Expressão Gênica , Estabilidade de RNA , RNA Mensageiro/metabolismo , Regulon , Transcrição Gênica , Genes Mitocondriais , Genes de RNAr , Biogênese de Organelas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Yeast ; 34(12): 475-482, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28866863

RESUMO

Pervasive transcription has been reported in many eukaryotic organisms, revealing a highly interleaved transcriptome organization that involves thousands of coding and non-coding RNAs. However, to date, the biological impact of transcriptome complexity is still poorly understood. Here I will review how subtle variations of the transcriptome can lead to divergent cellular phenotypes by fine-tuning both its coding potential and regulation. I will discuss strategies that can be used to link molecular variations with divergent biological outcomes. Finally, I will explore the implication of transcriptional complexity for our understanding of gene expression in the context of cell-to-cell phenotypic variability. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Saccharomyces cerevisiae/classificação , Transcriptoma/fisiologia , Regulação Fúngica da Expressão Gênica , Variação Genética , Fenótipo , Proteoma/genética , RNA Fúngico/química , RNA Fúngico/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA