Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Evolution ; 78(8): 1426-1440, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38720526

RESUMO

Sexes often have differing fitness optima, potentially generating intra-locus sexual conflict, as each sex bears a genetic "load" of alleles beneficial to the other sex. One strategy to evaluate conflict in the genome is to artificially select populations discordantly against established sexual dimorphism (SD), reintroducing attenuated conflict. We investigate a long-term artificial selection experiment reversing sexual size dimorphism in Drosophila melanogaster during ~350 generations of sexually discordant selection. We explore morphological and genomic changes to identify loci under selection between the sexes in discordantly and concordantly size-selected treatments. Despite substantial changes to overall size, concordant selection maintained ancestral SD. However, discordant selection altered size dimorphism in a trait-specific manner. We observe multiple possible soft selective sweeps in the genome, with size-related genes showing signs of selection. Patterns of genomic differentiation between the sexes within lineages identified potential sites maintained by sexual conflict. One discordant selected lineage shows a pattern of elevated genomic differentiation between males and females on chromosome 3L, consistent with the maintenance of sexual conflict. Our results suggest visible signs of conflict and differentially segregating alleles between the sexes due to discordant selection.


Assuntos
Drosophila melanogaster , Genoma de Inseto , Seleção Genética , Caracteres Sexuais , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/anatomia & histologia , Masculino , Feminino , Seleção Sexual , Tamanho Corporal
2.
Genetics ; 224(3)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-36961731

RESUMO

Identifying the genetic architecture of complex traits is important to many geneticists, including those interested in human disease, plant and animal breeding, and evolutionary genetics. Advances in sequencing technology and statistical methods for genome-wide association studies have allowed for the identification of more variants with smaller effect sizes, however, many of these identified polymorphisms fail to be replicated in subsequent studies. In addition to sampling variation, this failure to replicate reflects the complexities introduced by factors including environmental variation, genetic background, and differences in allele frequencies among populations. Using Drosophila melanogaster wing shape, we ask if we can replicate allelic effects of polymorphisms first identified in a genome-wide association studies in three genes: dachsous, extra-macrochaete, and neuralized, using artificial selection in the lab, and bulk segregant mapping in natural populations. We demonstrate that multivariate wing shape changes associated with these genes are aligned with major axes of phenotypic and genetic variation in natural populations. Following seven generations of artificial selection along the dachsous shape change vector, we observe genetic differentiation of variants in dachsous and genomic regions containing other genes in the hippo signaling pathway. This suggests a shared direction of effects within a developmental network. We also performed artificial selection with the extra-macrochaete shape change vector, which is not a part of the hippo signaling network, but showed a largely shared direction of effects. The response to selection along the emc vector was similar to that of dachsous, suggesting that the available genetic diversity of a population, summarized by the genetic (co)variance matrix (G), influenced alleles captured by selection. Despite the success with artificial selection, bulk segregant analysis using natural populations did not detect these same variants, likely due to the contribution of environmental variation and low minor allele frequencies, coupled with small effect sizes of the contributing variants.


Assuntos
Drosophila melanogaster , Estudo de Associação Genômica Ampla , Animais , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Herança Multifatorial , Fenótipo , Frequência do Gene , Variação Genética , Seleção Genética , Asas de Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA