Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 29(8): 12252-12265, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984989

RESUMO

To answer the question: "Is optical phase conjugation (OPC) capable of compensating nonlinear distortions caused by not only Kerr effect of optical fibre, but also the carrier dynamics of semiconductor optical amplifiers (SOAs)?", we investigate the effectiveness of OPC-based nonlinear compensation for SOAs amplifying a few-channel WDM signal modulated with m-QAM. We use a pair of SOAs with an OPC stage sandwiched between the two so that the combination works as a low-distortion amplifier. Symbol-period longer than the gain recovery time is chosen in our experiments to avoid bit-pattern effects introduced by the SOA. We amplify a 12Gbaud, 16QAM modulated three-channel WDM signal with this technique in the back-to-back configuration which remarkably outperforms a single SOA in the nonlinear regime of operation with an average Q2 improvement better than 4 dB for an output power of 4 dBm. We further demonstrate the practical advantage of the low distortion higher output power capability of the SOA shown in the back-to-back result by carrying out a transmission of the amplified signal through a 160-km fibre, where relatively high launch power is desirable. We also study the case of 64QAM signals and show that approximately a 3 dB Q2 factor improvement can be obtained over single SOA, while without nonlinear phase distortion compensation, the demodulation is nearly impracticable.

2.
Opt Express ; 25(15): 17847-17863, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789276

RESUMO

Optical frequency comb lines with poor carrier to noise ratio (CNR) are significantly improved by Brillouin amplification using its extreme narrow bandwidth gain to suppress out of band noise, enabling higher quality signal modulation. Its application to spectral lines of narrow 10 GHz pitch and poor CNR is shown to suppress the otherwise strong phase distortion caused by poor CNR after encoding with 96 Gb/s DP-64-QAM signals and restore the bit error rate (BER) to below the limit for standard forward error correction (FEC). This is also achieved with the required frequency shifted optical pump for amplification obtained by seeding it from the comb itself, sparing the need for lasers and frequency locking. Simultaneous CNR improvement for 38 comb lines is also achieved with BER restored to below the FEC limit, enabled by a multi-line pump that is pre-dispersed to suppress its spectral distortion from the Kerr effect in the gain medium. Carrier performance at minimum BER shows minimal noise impact from the Brillouin amplifier itself. The results highlight the unique advantage of Brillouin gain for phase sensitive communications in transforming otherwise noisy spectral lines into useful high quality signal carriers.

3.
Opt Lett ; 42(24): 5074-5077, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29240140

RESUMO

In this Letter, for the first time, to the best of our knowledge, we harness on-chip Brillouin scattering for narrowband amplification and spectral purification of frequency comb lines for coherent optical communications. A parametrically generated optical frequency comb with a low carrier-to-noise power ratio was filtered through narrowband Brillouin amplification utilizing the same comb as the optical pump. This was achieved on a photonic chip to enable successful transmission of an advanced modulation format signal: 64-level quadrature amplitude modulation. 96 Gb/s data were modulated on two polarizations on multiple comb lines across 1532.9-1557.5 nm, demonstrating the scalability of this concept for operation in wavelength division multiplexing applications. The small form factor of the photonic chip reduces the polarization drifts when compared to optical fibers and paves the way for photonic integration.

4.
Appl Opt ; 56(30): 8420-8424, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29091621

RESUMO

Integrated single-photon sources are a key component for photonic quantum technology but are generally limited to low single-photon rates. For sources based on photon pair generation by four-wave mixing, increasing the repetition rate of pump laser pulses is a straightforward way to enhance the single-photon rate, but the benefits and practical limitations have not yet been demonstrated and analyzed in a CMOS-compatible platform. In this work, we demonstrate correlated photon pair generation in integrated silicon nanowires and systematically analyze the count rate and coincidence to accidental ratio as the pump rate is varied between 156.25 MHz and 10 GHz. We show that the highest useful pump rate is limited by the timing resolution of the single-photon detection system, and that in this regime, the nonlinear loss of the silicon nanowire does not have a significant effect on the single-photon generation.

5.
Opt Express ; 23(3): 3640-6, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836216

RESUMO

We experimentally demonstrate compensation of nonlinear distortion caused by the Kerr effect in a 3 × 32-Gbaud quadrature phase-shift keying (QPSK) wavelength-division multiplexing (WDM) transmission system. We use optical phase conjugation (OPC) produced by four-wave mixing (FWM) in a 7-mm long silicon nanowire. A clear improvement in Q-factor is shown after 800-km transmission with high span input power when comparing the system with and without the optical phase conjugation module. The influence of OSNR degradation introduced by the silicon nanowire is analysed by comparing transmission systems of three different lengths. This is the first demonstration of nonlinear compensation using a silicon nanowire.

6.
Opt Express ; 22(9): 10455-66, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921747

RESUMO

We experimentally demonstrate fiber nonlinearity compensation in dual polarization coherent optical OFDM (DP CO-OFDM) systems using mid-span spectral inversion (MSSI). We use third-order nonlinearity between a pump and the signal in a highly nonlinear fiber (HNLF) for MSSI. Maximum launch powers at FEC threshold for two 10 × 80-km 16-QAM OFDM systems were increased by 6.4 dB at a 121-Gb/s data rate and 2.8 dB at 1.2 Tb/s. The experimental results are the first demonstration of using MSSI for nonlinearity compensation in any dual polarization coherent system. Simulations show that these increases could support a 22% increase in total transmission distance at 1.2-Tb/s system without increasing the number of inline amplifiers, by extending the fiber spans from 90 to 110 km. When spans of 80 km are used, simulations reveal that MSSI system performance shows less degradation with increasing transmission distance, and an overall transmission distance increase of more than 70% is expected using MSSI.

7.
Opt Express ; 21(18): 21423-32, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24104017

RESUMO

Compensation of nonlinear distortion of polarization-multiplexed (PolMux) signals in optical fiber is evaluated experimentally using all-optical signal pre-distortion and fiber loop phase-conjugation at the transmitter. An improved bit error rate is shown for high baud rate, 80 Gb/s RZ-DPSK PolMux signals before transmission in a 728 km long dispersion-managed fiber link employing a direct detection receiver. The partial compensation of nonlinear distortion for both single channel and 3 × 80 Gb/s WDM PolMux signals is observed, despite the impact from the inter-polarization nonlinearity and the associated polarization scattering. Evidence of the limited compensation of inter-polarization nonlinearity is shown.

8.
Opt Express ; 21(20): 23873-84, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24104298

RESUMO

We introduce an all-optical, format transparent hash code generator and a hash comparator for data packets verification with low latency at high baudrate. The device is reconfigurable and able to generate hash codes based on arbitrary functions and perform the comparison directly in the optical domain. Hash codes are calculated with custom interferometric circuits implemented with a Fourier domain optical processor. A novel nonlinear scheme featuring multiple four-wave mixing processes in a single waveguide is implemented for simultaneous phase and amplitude comparison of the hash codes before and after transmission. We demonstrate the technique with single polarisation BPSK and QPSK signals up to a data rate of 80 Gb/s.

9.
Appl Opt ; 52(9): 1919-27, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23518737

RESUMO

We demonstrate what we believe to be the first real-time impairment-cancellation system for group-velocity dispersion (GVD) and differential group delay (DGD) for a 640 Gb/s single-channel signal. Simultaneous compensation of two independent parameters is demonstrated by feedback control of separate GVD and DGD compensators using an impairment monitor based on an integrated all-optical radio-frequency (RF) spectrum analyzer. We show that low-bandwidth measurement of only a single tone in the RF spectrum is sufficient for automatic compensation for multiple degrees of freedom using a multivariate optimization scheme.

10.
Opt Express ; 20(7): 8015-23, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22453473

RESUMO

We demonstrate a nonlinear signal processing approach for compensating nonlinear distortion caused by the Kerr effect in optical fiber transmission. The concept relies on propagating the signal through a separate all-optical module outside the link to apply tunable nonlinear distortion and phase-conjugation in series. We show this uniquely enables tunable regeneration of phase-encoded 40 Gb/s signals of different data-formats and number of WDM channels, to allow significantly higher transmission powers through single and multi-span fiber links. An improvement in the receiver power penalty by 3~4 dB for a bit-error-rate (BER) of ≈10⁻5 is achieved.


Assuntos
Artefatos , Fibras Ópticas , Desenho de Equipamento , Análise de Falha de Equipamento , Dinâmica não Linear
11.
Opt Express ; 19(25): 25512-20, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22273944

RESUMO

We report the demonstration of automatic higher-order dispersion compensation for the transmission of 275 fs pulses associated with a Tbaud Optical Time Division Multiplexed (OTDM) signal. Our approach achieves simultaneous automatic compensation for 2nd, 3rd and 4th order dispersion using an LCOS spectral pulse shaper (SPS) as a tunable dispersion compensator and a dispersion monitor made of a photonic-chip-based all-optical RF-spectrum analyzer. The monitoring approach uses a single parameter measurement extracted from the RF-spectrum to drive a multidimensional optimization algorithm. Because these pulses are highly sensitive to fluctuations in the GVD and higher orders of chromatic dispersion, this work represents a key result towards practical transmission of ultrashort optical pulses. The dispersion can be adapted on-the-fly for a 1.28 Tbaud signal at any place in the transmission line using a black box approach.


Assuntos
Algoritmos , Desenho Assistido por Computador , Compressão de Dados/métodos , Modelos Teóricos , Dispositivos Ópticos , Processamento de Sinais Assistido por Computador/instrumentação , Telecomunicações/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação , Radiação Terahertz
12.
Opt Lett ; 36(2): 298-300, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21263532

RESUMO

We demonstrate on-chip all-optical pulse erasure based on four-wave mixing and cross-phase modulation in a dispersion engineered chalcogenide (As(2)S(3)) rib waveguide. We achieve an erasure efficiency of ~15 dB for picosecond pulses in good agreement with numerical simulations using the nonlinear Schrödinger equation. The combined effect of the high instantaneous optical nonlinearity (γ = 9900 (W km)(-1)) and small group-velocity dispersion (D = 29 ps/nm km), which reduces pulse walk-off, will enable all-optical pulse erasure for ultrafast signal processing.

13.
Opt Lett ; 36(9): 1728-30, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21540983

RESUMO

We demonstrate all-optical demultiplexing of a high-bandwidth, time-division multiplexed 160 Gbit/s signal to 10 Gbit/s channels, exploiting slow light enhanced four-wave mixing in a dispersion engineered, 96 µm long planar photonic crystal waveguide. We report error-free (bit error rate<10⁻9) operation of all 16 demultiplexed channels, with a power penalty of 2.2-2.4 dB, highlighting the potential of these structures as a platform for ultracompact all-optical nonlinear processes.

14.
Opt Lett ; 36(5): 710-2, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21368957

RESUMO

We demonstrate a photonic chip-based all-optical exclusive-OR (XOR) gate for phase-encoded optical signals via four-wave mixing in a highly nonlinear, dispersion-engineered chalcogenide (As2S3) planar waveguide. We achieve error-free, XOR operation for 40 Gbit/s differential phase shift keying (DPSK) optical signals with no power penalty. The effectiveness and broad bandwidth operation of our approach is highlighted by implementing an XOR gate for 160 Gbit/s DPSK signals.

15.
Opt Express ; 18(9): 9435-46, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20588790

RESUMO

We investigate an optical performance monitor based on Stimulated Brillouin scattering (SBS), for enabling the measurement of the in-band optical signal to noise ratio (OSNR) for multiple channels of a wavelength-division multiplexed (WDM) signal simultaneously. The principle relies on propagating the signal in a nonlinear waveguide so that each channel pumps SBS to produce a back-scattered Stokes wave of unique carrier wavelength, and with a power that depends on the in-band OSNR of the channel itself. We experimentally demonstrate a highly sensitive OSNR measurement for a 3 x 40 Gb/s signal, with a small sensitivity to the input state of polarization, and a large dynamic range (25 dB) in the Stokes power. Our results also reveal the insensitivity of SBS to both chromatic and polarization-mode dispersions, and the indirect role these effects can play in mitigating the suppression of SBS from the nonlinear Kerr effect.

16.
Opt Express ; 18(24): 25415-21, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21164889

RESUMO

We present automatic dispersion control of 1.28Tb/s optical time domain multiplexed signals. The dispersion is monitored by measuring the power of the 1.28THz tone of the RF spectrum using a photonic-chip-based radio-frequency spectrum analyzer (PC-RFSA) and the dispersion compensation is realized by means of a spectral pulse shaper, via computer-controlled feedback from the PC-RFSA.

17.
Opt Express ; 18(19): 20190-200, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20940910

RESUMO

We demonstrate a terahertz bandwidth silicon nanowire based radio-frequency spectrum analyzer using cross-phase modulation. We show that the device provides accurate characterization of 640Gbaud on-off-keyed data stream and demonstrate its potential for optical time-division multiplexing optimization and optical performance monitoring of ultrahigh speed signals on a silicon chip. We analyze the impact of free carrier effects on our device, and find that the efficiency of the device is not reduced by two-photon or free-carrier absorption, nor its accuracy compromised by free-carrier cross-chirp.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Nanotubos/química , Dispositivos Ópticos , Processamento de Sinais Assistido por Computador/instrumentação , Silício/química , Telecomunicações/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Ondas de Rádio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Opt Lett ; 35(7): 1073-5, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20364221

RESUMO

We directly investigate both experimentally and numerically the influence of optical nonlinear loss dynamics on a silicon waveguide based all-optical device. The dynamics of these nonlinear losses are explored through the analysis of optical limiting of an amplitude distorted 10 Gbit/s signal in a slow-light silicon photonic crystal waveguide. As the frequency of the distortion approaches the free-carrier recombination rate, free-carrier absorption reaches a steady state, leaving two-photon absorption the dominant dynamic nonlinear loss. Our results highlight the importance of engineering the free-carrier lifetime in silicon waveguides for high speed all-optical processing applications.

19.
Opt Express ; 17(25): 22983-91, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-20052224

RESUMO

A broadband photonic instantaneous frequency measurement system utilizing four-wave mixing in highly nonlinear fiber is demonstrated. This new approach is highly stable and does not require any high-speed electronics or photodetectors. A first principles model accurately predicts the system response. Frequency measurement responses from 1 to 40 GHz are demonstrated and simple reconfiguration allows the system to operate over multiple bands.


Assuntos
Análise de Falha de Equipamento/instrumentação , Análise de Falha de Equipamento/métodos , Fibras Ópticas , Fotometria/instrumentação , Fotometria/métodos , Desenho Assistido por Computador , Desenho de Equipamento , Luz , Espalhamento de Radiação
20.
Opt Express ; 17(5): 3514-20, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19259190

RESUMO

We demonstrate broadband wavelength conversion of a 40 Gb/s return-to-zero signal using four-wave-mixing (FWM) in a dispersion engineered chalcogenide glass waveguide. The 6 cm long planar rib waveguide 2 mum wide was fabricated in a 0.87 mum thick film etched 350nm deep to correspond to a design where waveguide dispersion offsets the material leading to near-zero dispersion in the C-band and broadband phase matched FWM. The reduced dimensions also enhance the nonlinear coefficient to 9800 W(-1)km(-1) at 1550 nm enabling broadband conversion in a shorter device. In this work, we demonstrate 80 nm wavelength conversions with 1.65 dB of power penalty at a bit-error rate of 10(-9). Spectral measurements and simulations indicate extended broadband operation is possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA