Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(22): 9274-9, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21571636

RESUMO

Although many genes have been implicated in the pathogenesis of common neurodegenerative diseases, the genetic and cellular mechanisms that maintain neuronal integrity during normal aging remain elusive. Here we show that Caenorhabditis elegans touch receptor and cholinergic neurons display age-dependent morphological defects, including cytoskeletal disorganization, axon beading, and defasciculation. Progression of neuronal aging is regulated by DAF-2 and DAF-16 signaling, which also modulate adult life span. Mutations that disrupt touch-evoked sensory activity or reduce membrane excitability trigger accelerated neuronal aging, indicating that electrical activity is critical for adult neuronal integrity. Disrupting touch neuron attachment to the epithelial cells induces distinct neurodegenerative phenotypes. These results provide a detailed description of the age-dependent morphological defects that occur in identified neurons of C. elegans, demonstrate that the age of onset of these defects is regulated by specific genes, and offer experimental evidence for the importance of normal levels of neural activity in delaying neuronal aging.


Assuntos
Envelhecimento , Caenorhabditis elegans/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Tato/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Matriz Extracelular/metabolismo , Genes de Helmintos , Insulina/metabolismo , Microscopia de Fluorescência/métodos , Modelos Biológicos , Mutação , Doenças Neurodegenerativas , Fenótipo , Transdução de Sinais
2.
Arterioscler Thromb Vasc Biol ; 30(10): 1905-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20689077

RESUMO

OBJECTIVE: The introduction of 4 transcription factors-c-MYC, OCT3/4, SOX2, and KLF4--can reprogram somatic cells back to pluripotency. However, some of the factors used are oncogenic, making therapeutic application unfeasible. Although the use of adult stem cells expressing high endogenous levels of some of these factors allows for reprogramming with fewer exogenous genes, such cells are rare and may have accumulated genetic mutations. Our goal was to reprogram human somatic cells without oncogenic factors. We found that high endogenous expression of KLF4 in human umbilical vein endothelial cells (HUVECs) allows for generation of induced pluripotent stem cells (iPSCs) with just 2 nononcogenic factors, OCT3/4 and SOX2. METHODS AND RESULTS: HUVECs were infected with lentivirus containing OCT4 and SOX2 for generation of iPSCs. These 2-factor HUVEC iPSCs were morphologically similar to embryonic stem cells, express endogenous pluripotency markers postreprogramming, and can differentiate toward lineages of all 3 germ layers both in vitro and in vivo. CONCLUSIONS: iPSCs can be generated from HUVECs with only 2 nononcogenic factors. The use of fetal cells for reprogramming without oncogenic factors may provide an efficient in vitro model for human iPSC research, as well as a novel source for possible therapeutic use.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Expressão Gênica , Humanos , Técnicas In Vitro , Fator 4 Semelhante a Kruppel , Lentivirus/genética , Fator 3 de Transcrição de Octâmero/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição SOXB1/genética , Transfecção
3.
Stem Cells Dev ; 21(10): 1675-87, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22034921

RESUMO

Embryonic stem cells (ESCs) are promising donor sources in cell therapies for various diseases. Although low levels of reactive oxygen species (ROS) are necessary for the maintenance of stem cells, increased ROS levels initiate differentiation and cell damage. We and others have previously demonstrated that heme oxygenase (HO)-1, a stress response protein with antioxidative and anti-inflammatory properties, plays critical protective functions in cardiovascular and other diseases. However, the functions of HO-1 in ESCs remain to be elucidated. Our goal was to investigate the roles of HO-1 in ESC survival and differentiation. Due to the lack of HO-1-deficient ESCs, we used Oct3/4, Sox2, c-Myc, and Klf4 retroviruses to reprogram mouse embryonic fibroblasts into induced pluripotent stem (iPS) cells of different HO-1 genotypes. These iPS-HO-1 cells exhibited characteristics of mouse ESCs (mESCs) and formed teratomas that were composed of cell types of all 3 germ layers after injected into severe combined immunodeficiency mice. In response to oxidant stress, iPS-HO-1(-/-) cells accumulated higher levels of intracellular ROS compared with D3 mESCs or iPS-HO-1(+/+) cells and were more prone to oxidant-induced cell death. Spontaneous differentiation experiments revealed that Oct4 levels were significantly lower in iPS-HO-1(-/-) cells after leukemia inhibitory factor withdrawal and removal of feeders. Further, during the course of spontaneous differentiation, iPS-HO-1(-/-) cells had enhanced Erk1/2 phosphorylation, which has been linked to ESC differentiation. By the loss-of-function approach using iPS-HO-1(-/-) cells, our results demonstrate that a lack of HO-1 renders iPS cells more prone to oxidative stress-induced cell death and differentiation.


Assuntos
Apoptose , Diferenciação Celular , Heme Oxigenase-1/deficiência , Células-Tronco Pluripotentes Induzidas/fisiologia , Estresse Oxidativo , Fosfatase Alcalina/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Células-Tronco Embrionárias/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Teste de Complementação Genética , Heme Oxigenase-1/genética , Células-Tronco Pluripotentes Induzidas/enzimologia , Células-Tronco Pluripotentes Induzidas/transplante , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Teratoma/enzimologia , Teratoma/patologia
4.
Commun Integr Biol ; 4(6): 696-8, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22446530

RESUMO

Aging of the nervous system underlies the behavioral and cognitive decline associated with senescence. Understanding the molecular and cellular basis of neuronal aging will therefore contribute to the development of effective treatments for aging and age-associated neurodegenerative disorders. Despite this pressing need, there are surprisingly few animal models that aim at recapitulating neuronal aging in a physiological context. We recently developed a C. elegans model of neuronal aging, and showed that age-dependent neuronal defects are regulated by insulin signaling. We identified electrical activity and epithelial attachment as two critical factors in the maintenance of structural integrity of C. elegans touch receptor neurons. These findings open a new avenue for elucidating the molecular mechanisms that maintain neuronal structures during the course of aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA