Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(36): e202406596, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38872354

RESUMO

Electrolytes endowed with high oxidation/reduction interfacial stability, fast Li-ion desolvation process and decent ionic conductivity over wide temperature region are known critical for low temperature and fast-charging performance of energy-dense batteries, yet these characteristics are rarely satisfied simultaneously. Here, we report anchored weakly-solvated electrolytes (AWSEs), that are designed by extending the chain length of polyoxymethylene ether electrolyte solvent, can achieve the above merits at moderate salt concentrations. The -O-CH2-O- segment in solvent enables the weak four-membered ring Li+ coordination structure and the increased number of segments can anchor the solvent by Li+ without largely sacrificing the ionic dissociation ability. Therefore, the single salt/single solvent AWSEs enable solvent co-intercalation-free behavior towards graphite (Gr) anode and high oxidation stability towards high-nickel cathode (LiNi0.8Co0.1Mn0.1O2-NCM811), as well as the formation of inorganic rich electrode/electrolyte interphase on both of them due to the anion-rich solvation shells. The capacity retention of Gr||NCM811 Ah-class pouch cell can reach 70.85 % for 1000 cycles at room-temperature and 75.86 % for 400 cycles at -20 °C. This work points out a promising path toward the molecular design of electrolyte solvents for high-energy/power battery systems that are adaptive for extreme conditions.

2.
Nanomicro Lett ; 16(1): 198, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758464

RESUMO

Vertically oriented carbon structures constructed from low-dimensional carbon materials are ideal frameworks for high-performance thermal interface materials (TIMs). However, improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task. Herein, an orthotropic three-dimensional (3D) hybrid carbon network (VSCG) is fabricated by depositing vertically aligned carbon nanotubes (VACNTs) on the surface of a horizontally oriented graphene film (HOGF). The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy. After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsiloxane (PDMS), VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained. The highest in-plane and through-plane thermal conductivities of the composites are 113.61 and 24.37 W m-1 K-1, respectively. The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance. In addition, the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3% compared to that of a state-of-the-art thermal pad. This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.

3.
Mater Horiz ; 11(2): 531-544, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37982197

RESUMO

Interface thermal resistance has become a crucial barrier to effective thermal management in high-performance electronics and sensors. The growing complexity of operational conditions, such as irregular and dynamic surfaces, demands thermal interface materials (TIMs) to possess high thermal conductivity and soft elasticity. However, developing materials that simultaneously combine soft elasticity and high thermal conductivity remains a challenging task. Herein, we utilize a vertically oriented graphene aerogel (VGA) and rationally design liquid metal (LM) networks to achieve directional and adjustable pathways within the composite. Subsequently, we leverage the advantages of the low elastic modulus and high deformation capabilities of brush-shaped polydimethylsiloxane (BPDMS), together with the bicontinuous thermal conduction path constructed by VGA and LM networks. Ultimately, the designed composite of patterned liquid metal/vertically oriented graphene aerogel/brush-shaped PDMS (LM-VGA/BPDMS) shows a high thermal conductivity (7.11 W m-1 K-1), an ultra-low elastic modulus (10.13 kPa), excellent resilience, and a low interface thermal resistance (14.1 K mm2 W-1). This LM-VGA/BPDMS soft composite showcases a stable heat dissipation capability at dynamically changing interfaces, as well as excellent adaptability to different irregular surfaces. This strategy holds important application prospects in the fields of interface thermal management and thermal sensing in extremely complex environments.

4.
Adv Sci (Weinh) ; 10(7): e2205962, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36627131

RESUMO

The controllability of the microstructure of a compressed hierarchical building block is essential for optimizing a variety of performance parameters, such as thermal management. However, owing to the strong orientation effect during compression molding, optimizing the alignment of materials perpendicular to the direction of pressure is challenging. Herein, to illustrate the effect of the ordered microstructure on heat dissipation, thermally conductive carbon-based materials are fabricated by tailoring dense, orientation-tunable, and interleaved structures. Vertically aligned carbon nanotube arrays (VACNTs) interconnected with graphene films (GF) are prepared as a 3D core-ordered material to fabricate compressed building blocks of O-VA-GF and S-VA-GF. Leveraging the densified interleaved structure offered by VACNTs, the hierarchical O-VA-GF achieves excellent through-plane (41.7 W m-1 K-1 ) and in-plane (397.9 W m-1 K-1 ) thermal conductivities, outperforming similar composites of S-VA-GF (through-plane: 10.3 W m-1 K-1 and in-plane: 240.9 W m-1 K-1 ) with horizontally collapsed carbon nanotubes. As heat dissipation plates, these orderly assembled composites yield a 144% and 44% enhancement in the cooling coefficient compared with conventional Si3 N4 for cooling high-power light-emitting diode chips.

5.
Adv Sci (Weinh) ; 9(33): e2201331, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36251921

RESUMO

Heat and stress transfer at an interface are crucial for the contact-based tactile sensing to measure the temperature, morphology, and modulus. However, fabricating a smart sensing material that combines high thermal conductivity, elasticity, and good adhesion is challenging. In this study, a composite is fabricated using a directional template of vertically aligned folded graphene (VAFG) and a copolymer matrix of poly-2-[[(butylamino)carbonyl]oxy]ethyl ester and polydimethylsiloxane, vinyl-end-terminated polydimethylsiloxane (poly(PBAx-ran-PDMS)). With optimized chemical cross-linking and supermolecular interactions, the poly(PBA-ran-PDMS)/VAFG exhibits high thermal conductivity (15.49 W m-1 K-1 ), an high elastic deformation, and an interfacial adhesion of up to 6500 N m-1 . Poly(PBA-ran-PDMS)/VAFG is highly sensitive to temperature and pressure and demonstrates a self-learning capacity for manipulator applications. The smart manipulator can distinguish and selectively capture unknown materials in the dark. Thermally conductive, elastic, and adhesive poly(PBA-ran-PDMS)/VAFG can be developed into core materials in intelligent soft robots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA