Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36232985

RESUMO

The pollen wall is a specialized extracellular cell wall that protects male gametophytes from various environmental stresses and facilitates pollination. Here, we reported that bHLH010 and bHLH089 together are required for the development of the pollen wall by regulating their specific downstream transcriptional and metabolic networks. Both the exine and intine structures of bhlh010 bhlh089 pollen grains were severely defective. Further untargeted metabolomic and transcriptomic analyses revealed that the accumulation of pollen wall morphogenesis-related metabolites, including polysaccharides, glyceryl derivatives, and flavonols, were significantly changed, and the expression of such metabolic enzyme-encoding genes and transporter-encoding genes related to pollen wall morphogenesis was downregulated in bhlh010 bhlh089 mutants. Among these downstream target genes, CSLB03 is a novel target with no biological function being reported yet. We found that bHLH010 interacted with the two E-box sequences at the promoter of CSLB03 and directly activated the expression of CSLB03. The cslb03 mutant alleles showed bhlh010 bhlh089-like pollen developmental defects, with most of the pollen grains exhibiting defective pollen wall structures.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flavonóis/metabolismo , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Mutação , Pólen/metabolismo , Fatores de Transcrição/metabolismo
2.
BMC Genomics ; 22(1): 183, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33711923

RESUMO

BACKGROUND: Somatic embryogenesis (SE) is a promising technology for plant vegetative propagation, which has an important role in tree breeding. Though rubber tree (Hevea brasiliensis Muell. Arg.) SE has been founded, few late SE-related genes have been identified and the molecular regulation mechanisms of late SE are still not well understood. RESULTS: In this study, the transcriptomes of embryogenic callus (EC), primary embryo (PE), cotyledonary embryo (CE), abnormal embryo (AE), mature cotyledonary embryo (MCE) and withered abnormal embryo (WAE) were analyzed. A total of 887,852,416 clean reads were generated, 85.92% of them were mapped to the rubber tree genome. The de novo assembly generated 36,937 unigenes. The differentially expressed genes (DEGs) were identified in the pairwise comparisons of CE vs. AE and MCE vs. WAE, respectively. The specific common DEGs were mainly involved in the phytohormones signaling pathway, biosynthesis of phenylpropanoid and starch and sucrose metabolism. Among them, hormone signal transduction related genes were significantly enriched, especially the auxin signaling factors (AUX-like1, GH3.1, SAUR32-like, IAA9-like, IAA14-like, IAA27-like, IAA28-like and ARF5-like). The transcription factors including WRKY40, WRKY70, MYBS3-like, MYB1R1-like, AIL6 and bHLH93-like were characterized as molecular markers for rubber tree late SE. CML13, CML36, CAM-7, SERK1 and LEAD-29-like were also related to rubber tree late SE. In addition, histone modification had crucial roles during rubber tree late SE. CONCLUSIONS: This study provides important information to elucidate the molecular regulation during rubber tree late SE.


Assuntos
Hevea , Desenvolvimento Embrionário , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hevea/genética , Hevea/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
3.
Biosci Biotechnol Biochem ; 85(3): 562-567, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33590039

RESUMO

Virus-induced gene silencing (VIGS) is a powerful gene-silencing tool that has been intensively applied in plants. To data, the application of VIGS in rubber tree has not yet been reported. In this study, we described the efficient gene silencing in rubber tree by VIGS. The gene encoding Hevea brasiliensis phytoene desaturase (HbPDS) was identified in rubber tree genome. Small interfering RNAs from HbPDS and the silencing gene fragment were predicted and a length of 399 bp was selected to be tested. We showed that the tobacco rattle virus (TRV)-VIGS could induce effective HbPDS silencing in rubber tree. This study was the first to report VIGS in rubber tree. The present TRV-VIGS method could be used to perform reverse genetic approaches to identify unknown gene functions and might be further applied to produce gene silenced rubber tree plants, to advance functional gene of rubber tree.


Assuntos
Inativação Gênica/fisiologia , Genes de Plantas , Hevea/genética , Vírus de Plantas/fisiologia , RNA Interferente Pequeno/genética
4.
Genet Mol Biol ; 43(1): e20180141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31441928

RESUMO

Histone methylation plays a crucial role in various biological processes, from heterochromatin formation to transcriptional regulation. Currently, no information is available regarding histone methylation modifiers in the important rubber-producing plant Hevea brasiliensis. Here, we identified 47 histone methyltransferase (HMT) genes and 25 histone demethylase (HDM) genes as possible members of the histone methylation modifiers in the rubber tree genome. According to the structural features of HMT and HDM, the HbHMTs were classified into two groups (HbPRMs and HbSDGs), the HbHDMs have two groups (HbLSDs and HbJMJs). Expression patterns were analyzed in five different tissues and at different phases of somatic embryogenesis. HbSDG10, 21, 25, 33, HbJMJ2, 18, 20 were with high expression at different phases of somatic embryogenesis. HbSDG10,14, 20, 21, 33 and HbPRMT4 were expressed highly in anther, HbSDG14, 20, 21, 22, 23, 33, 35 and HbPRMT1 HbJMJ7 and HbLSD1, 2, 3, 4 showed high expression levels in callus. HbSDG1, 7, 10, 13, 14, 18, 19, 21, 22, 23, 35, HbPRMT1, 8, HbJMJ5, 7, 11, 16, 20 and HbLSD2, 3, 4 were expressed highly in somatic embryo. HbSDG10, 21, 25, 33, HbLSD2, 3 were expressed highly in bud of regenerated plant. The analyses reveal that HbHMTs and HbHDMs exhibit different expression patterns at different phases during somatic embryogenesis, implying that some HbHMTs and HbHDMs play important roles during somatic embryogenesis. This study provide fundamental information for further studies on histone methylation in Hevea brasiliensis.

5.
J Exp Bot ; 69(8): 1903-1912, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29432591

RESUMO

Hevea brasiliensis is a key commercial source of natural rubber (cis 1,4-polyisoprene). In H. brasiliensis, rubber transferase is responsible for cis-1,4-polymerization of isoprene units from isopentenyl diphosphate and thus affects the yield of rubber. Little is known about the regulatory mechanisms of the rubber transferase gene at a molecular level. In this study we show that the 5'UTR intron of the promoter of the rubber transferase gene (HRT2) suppresses the expression of HRT2. A H. brasiliensis RING zinc finger protein (designated as HbRZFP1) was able to interact specifically with the HRT2 promoter to down-regulate its transcription in vivo. A 14-3-3 protein (named as HbGF14a) was identified as interacting with HbRZFP1, both in yeast and in planta. Transient co-expression of HbGF14a and HbRZFP1-encoding cDNAs resulted in HbRZFP1-mediated HRT2 transcription inhibition being relieved. HbGF14a repressed the protein-DNA binding of HbRZFP1 with the HRT2 promoter in yeast. We propose a regulatory mechanism by which the binding of HbGF14a to HbRZFP1 interferes with the interaction of HbRZFP1 with the HRT2 promoter, thereby repressing the protein-DNA binding between them. This study provides new insights into the role of HbGF14a in mediating expression of the rubber transferase gene in Hevea brasiliensis.


Assuntos
Proteínas 14-3-3/metabolismo , Regulação Enzimológica da Expressão Gênica , Hevea/metabolismo , Proteínas de Plantas/metabolismo , Transferases/genética , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Hevea/química , Hevea/classificação , Hevea/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Domínios RING Finger , Borracha/metabolismo , Alinhamento de Sequência , Transferases/química , Transferases/metabolismo , Dedos de Zinco
6.
J Exp Bot ; 69(15): 3559-3571, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29726901

RESUMO

Rubber trees are the world's major source of natural rubber. Rubber-containing latex is obtained from the laticifer cells of the rubber tree (Hevea brasiliensis) via regular tapping. Rubber biosynthesis is a typical isoprenoid metabolic process in the laticifer cells; however, little is known about the positive feedback regulation caused by the loss of latex that occurs through tapping. In this study, we demonstrate the crucial role of jasmonate signalling in this feedback regulation. The endogenous levels of jasmonate, the expression levels of rubber biosynthesis-related genes, and the efficiency of in vitro rubber biosynthesis were found to be significantly higher in laticifer cells of regularly tapped trees than those of virgin (i.e. untapped) trees. Application of methyl jasmonate had similar effects to latex harvesting in up-regulating the rubber biosynthesis-related genes and enhancing rubber biosynthesis. The specific jasmonate signalling module in laticifer cells was identified as COI1-JAZ3-MYC2. Its activation was associated with enhanced rubber biosynthesis via up-regulation of the expression of a farnesyl pyrophosphate synthase gene and a small rubber particle protein gene. The increase in the corresponding proteins, especially that of farnesyl pyrophosphate synthase, probably contributes to the increased efficiency of rubber biosynthesis. To our knowledge, this is the first study to reveal a jasmonate signalling pathway in the regulation of rubber biosynthesis in laticifer cells. The identification of the specific jasmonate signalling module in the laticifer cells of the rubber tree may provide a basis for genetic improvement of rubber yield potential.


Assuntos
Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Hevea/fisiologia , Látex/biossíntese , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Genes Reporter , Hevea/genética , Filogenia , Técnicas do Sistema de Duplo-Híbrido
7.
J Plant Res ; 131(3): 555-562, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29234988

RESUMO

Dracaena cambodiana is a traditional medicinal plant used for producing dragon's blood. The plants and dragon's blood of D. cambodiana contain a rich variety of steroidal saponins. However, little is known about steroidal saponin biosynthesis and its regulation in D. cambodiana. Here, 122 genes encoding enzymes involved in steroidal saponin biosynthesis were identified based on transcriptome data, with 29 of them containing complete open reading frames (ORF). Transcript expression analysis revealed that several genes related to steroidal saponin biosynthesis showed distinct tissue-specific expression patterns; the expression levels of genes encoding the key enzymes involved in the biosynthesis and early modification of steroidal saponins were significantly down-regulated in the stems in response to the inducer of dragon's blood, exhibiting positive correlations with the content of steroidal saponins. These results provide insights on the steroidal saponins biosynthetic pathway and mechanisms underlying induced formation of dragon's blood in D. cambodiana.


Assuntos
Dracaena/genética , Saponinas/biossíntese , Transcriptoma , Vias Biossintéticas , Dracaena/química , Dracaena/metabolismo , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Extratos Vegetais/biossíntese , Extratos Vegetais/química , Saponinas/química
8.
Genet Mol Biol ; 39(1): 73-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27007901

RESUMO

Mago nashi (MAGO) and Y14 proteins are highly conserved among eukaryotes. In this study, we identified two MAGO (designated as HbMAGO1 andHbMAGO2) and two Y14 (designated as HbY14aand HbY14b) genes in the rubber tree (Hevea brasiliensis) genome annotation. Multiple amino acid sequence alignments predicted that HbMAGO and HbY14 proteins are structurally similar to homologous proteins from other species. Tissue-specific expression profiles showed that HbMAGO and HbY14 genes were expressed in at least one of the tissues (bark, flower, latex, leaf and root) examined. HbMAGOs and HbY14s were predominately located in the nucleus and were found to interact in yeast two-hybrid analysis (YTH) and bimolecular fluorescence complementation (BiFC) assays. HbMAGOs and HbY14s showed the highest transcription in latex and were regulated by ethylene and jasmonate. Interaction between HbMAGO2 and gp91phox (a large subunit of nicotinamide adenine dinucleotide phosphate) was identified using YTH and BiFC assays. These findings suggested that HbMAGO may be involved in the aggregation of rubber particles in H. brasiliensis.

9.
Plant Cell Rep ; 34(9): 1569-78, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25987315

RESUMO

KEY MESSAGE: The HbCZF1 protein binds to the hmg1 promoter in yeast and this interaction was confirmed in vitro. The hmg1 promoter was activated in transgenic plants by HbCZF1. Biosynthesis of natural rubber is known to be based on the mevalonate pathway in Hevea brasiliensis. The final step in the mevalonate production is catalyzed by the branch point enzyme, 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGR), which shunts HMG-CoA into the isoprenoid pathway, leading to the synthesis of natural rubber. However, molecular regulation of HMGR expression is not known. To study the transcriptional regulation of HMGR, the yeast one-hybrid experiment was performed to screen the latex cDNA library using the hmg1 (one of the three HMGR in H. brasiliensis) promoter as bait. One cDNA that encodes the CCCH-type zinc finger protein, designated as HbCZF1, was isolated from H. brasiliensis. HbCZF1 interacted with the hmg1 promoter in yeast one-hybrid system and in vitro. HbCZF1 contains a 1110 bp open reading frame that encodes 369 amino acids. The deduced HbCZF1 protein was predicted to possess a typical C-X7-C-X5-C3-H CCCH motif and RNA recognition motif. HbCZF1 was predominant in the latex, but little expression was detected in the leaves, barks, and roots. Furthermore, in transgenic tobacco plants, over-expression of HbCZF1 highly activated the hmg1 promoter. These results suggested that HbCZF1 may participate in the regulation of natural rubber biosynthesis in H. brasiliensis.


Assuntos
Hevea/enzimologia , Hevea/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas de Plantas/genética , Dedos de Zinco/genética , Acetatos/farmacologia , Sequência de Aminoácidos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ciclopentanos/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hevea/efeitos dos fármacos , Dados de Sequência Molecular , Oxilipinas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Nicotiana/genética , Transcrição Gênica/efeitos dos fármacos
10.
Genomics ; 104(1): 14-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24793160

RESUMO

WRKY proteins constitute a large family of transcription factors. In this study, we identified 81 WRKY genes (named HbWRKY1 to HbWRKY81) in the latest rubber tree genome. Tissue-specific expression profiles showed that 74 HbWRKYs were expressed in at least one of the tissues and the other 7 genes showed very low expression in all tissues tested, which suggested that HbWRKYs took part in many cellular processes. The responses of 20 selected HbWRKYs to jasmonic acid (JA) and ethylene (ET) were analyzed in the latex. 17 HbWRKYs responded to at least one treatment, which included 15 HbWRKYs responding to JA treatment, 15 HbWRKYs to ET, which suggested that these HbWRKYs were regulated by JA and ET. We also observed that HbWRKY3, 14, and 55 bind HbSRPP promoter and activate the transcription in yeast. This study suggests that HbWRKY proteins maybe involved in the transcriptional regulation of nature rubber biosynthesis.


Assuntos
Genes de Plantas , Hevea/genética , Família Multigênica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Látex/biossíntese , Dados de Sequência Molecular , Especificidade de Órgãos
11.
Int J Mol Sci ; 16(9): 22402-14, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26389894

RESUMO

Farnesyl diphosphate synthase (FPS) is a key enzyme of isoprenoids biosynthesis. However, knowledge of the FPSs of euphorbiaceous species is limited. In this study, ten FPSs were identified in four euphorbiaceous plants. These FPSs exhibited similar exon/intron structure. The deduced FPS proteins showed close identities and exhibited the typical structure of plant FPS. The members of the FPS family exhibit tissue expression patterns that vary among several euphorbiaceous plant species under normal growth conditions. The expression profiles reveal spatial and temporal variations in the expression of FPSs of different tissues from Euphorbiaceous plants. Our results revealed wide conservation of FPSs and diverse expression in euphorbiaceous plants during growth and development.


Assuntos
Euphorbiaceae/enzimologia , Genes de Plantas , Geraniltranstransferase/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência Conservada , Euphorbiaceae/genética , Regulação da Expressão Gênica de Plantas , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Splicing de RNA
12.
Transgenic Res ; 23(2): 331-40, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24043397

RESUMO

Small rubber particle protein (SRPP) is a major component of Hevea brasiliensis latex, and obviously participates in the biosynthesis of natural rubber. However, little information is available about regulation of SRPP gene expression. In this study, the promoter region of HbSRPP was isolated and characterized. Its sequence included regulatory elements predicted to be responsive to hormones and other environmental cues. Promoter deletion analysis revealed that 219 nucleotides (nt) upstream of the transcription start site were sufficient for expression. The region from -1,055 to -219 nt positively regulated expression induced by methyl jasmonate (MeJA), abscisic acid (ABA), and wounding; the region from -734 to -528 nt positively regulated expression induced by gibberellic acid (GA); the region from -734 to -219 nt positively regulated expression induced by heat; the region from -1,055 to -4 negatively regulated expression induced by cold; the region from -219 to -4 nt was associated with negative regulation of expression induced by ABA and wounding; the region from -528 to -4 nt negatively regulated expression induced by GA. These results suggest the activity of the HbSRPP promoter is regulated by MeJA, ABA, GA, cold, heat, and wounding.


Assuntos
Antígenos de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Hevea/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ácido Abscísico/farmacologia , Acetatos/farmacologia , Clonagem Molecular , Ciclopentanos/farmacologia , Primers do DNA/genética , Fluorometria , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Glucuronidase , Histocitoquímica , Oxilipinas/farmacologia , Elementos Reguladores de Transcrição/genética , Análise de Sequência de DNA , Temperatura , Nicotiana
13.
Genet Mol Biol ; 37(3): 549-55, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25249778

RESUMO

The cDNA encoding the R1-MYB transcription factor, designated as JcR1MYB1, was isolated from Jatropha curcas using rapid amplification of cDNA ends. JcR1MYB1 contains a 951 bp open reading frame that encodes 316 amino acids. The deduced JcR1MYB1 protein was predicted to possess the conserved, 56-amino acid-long DNA-binding domain, which consists of a single helix-turn-helix module and usually occurs in R1-MYBs. JcR1MYB1 is a member of the R1-MYB transcription factor subfamily. A subcellular localization study confirmed the nuclear localization of JcR1MYB1. Expression analysis showed that JcR1MYB1 transcripts accumulated in various examined tissues, with high expression levels in the root and low levels in the stem. JcR1MYB1 transcription was up-regulated by polyethylene glycol, NaCl, and cold treatments, as well as by abscisic acid, jasmonic acid, and ethylene treatment. Analysis of transgenic tobacco plants over-expressing JcR1MYB1 indicates an inportant function for this gene in salt stress.

14.
Sci China Life Sci ; 67(3): 565-578, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38097889

RESUMO

The tapetum, a crucial innermost layer encompassing male reproductive cells within the anther wall, plays a pivotal role in normal pollen development. The transcription factors (TFs) bHLH010/089/091 redundantly facilitate the rapid nuclear accumulation of DYSFUNCTIONAL TAPETUM 1, a gatekeeper TF in the tapetum. Nevertheless, the regulatory mechanisms governing the activity of bHLH010/089/091 remain unknown. In this study, we reveal that caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1) is a negative regulator affecting the nuclear localization and function of bHLH010 and bHLH089, probably through their K259 site. Our findings underscore that CCoAOMT1 promotes the nuclear export and degradation of bHLH010 and bHLH089. Intriguingly, elevated CCoAOMT1 expression resulted in defective pollen development, mirroring the phenotype observed in bhlh010 bhlh089 mutants. Moreover, our investigation revealed that the K259A mutation in the bHLH089 protein disrupted its translocation from the nucleus to the cytosol and impeded its degradation induced by CCoAOMT1. Importantly, transgenic plants with the probHLH089::bHLH089K259A construct failed to rescue proper pollen development or gene expression in bhlh010 bhlh089 mutants. Collectively, these findings emphasize the need to maintain balanced TF homeostasis for male fertility. They firmly establish CCoAOMT1 as a pivotal regulator that is instrumental in achieving equilibrium between the induction of the tapetum transcriptional network and ensuring appropriate anther development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Metiltransferases/genética , Regulação da Expressão Gênica de Plantas , Flores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Front Plant Sci ; 15: 1407700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978517

RESUMO

Rubber tree (Hevea brasiliensis) is reproduced by bud grafting for commercial planting, but significant intraclonal variations exist in bud-grafted clones. DNA methylation changes related to grafting may be partly responsible for intraclonal variations. In the current study, whole-genome DNA methylation profiles of grafted rubber tree plants (GPs) and their donor plants (DPs) were evaluated by whole-genome bisulfite sequencing. Data showed that DNA methylation was downregulated and DNA methylations in CG, CHG, and CHH sequences were reprogrammed in GPs, suggesting that grafting induced the reprogramming of DNA methylation. A total of 5,939 differentially methylated genes (DMGs) were identified by comparing fractional methylation levels between GPs and DPs. Transcriptional analysis revealed that there were 9,798 differentially expressed genes (DEGs) in the DP and GP comparison. A total of 1,698 overlapping genes between DEGs and DMGs were identified. These overlapping genes were markedly enriched in the metabolic pathway and biosynthesis of secondary metabolites by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Global DNA methylation and transcriptional analyses revealed that reprogramming of DNA methylation is correlated with gene expression in grafted rubber trees. The study provides a whole-genome methylome of rubber trees and an insight into the molecular mechanisms underlying the intraclonal variations existing in the commercial planting of grafted rubber trees.

16.
Plant Physiol Biochem ; 210: 108571, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604011

RESUMO

2-(2-Phenylethyl) chromone (PEC) and its derivatives are markers of agarwood formation and are also related to agarwood quality. However, the biosynthetic and regulatory mechanisms of PECs still remain mysterious. Several studies suggested that type III polyketide synthases (PKSs) contribute to PEC biosynthesis in Aquilaria sinensis. Furthermore, systematic studies on the evolution of PKSs in A. sinensis have rarely been reported. Herein, we comprehensively analyzed PKS genes from 12 plant genomes and characterized the AsPKSs in detail. A unique branch contained only AsPKS members was identified through evolutionary analysis, including AsPKS01 that was previously indicated to participate in PEC biosynthesis. AsPKS07 and AsPKS08, two tandem-duplicated genes of AsPKS01 and lacking orthologous genes in evolutionary models, were selected for their transient expression in the leaves of Nicotiana benthamiana. Subsequently, PECs were detected in the extracts of N. benthamiana leaves, suggesting that AsPKS07 and AsPKS08 promote PEC biosynthesis. The interaction between the promoters of AsPKS07, AsPKS08 and five basic leucine zippers (bZIPs) from the S subfamily indicated that their transcripts could be regulated by these transcription factors (TFs) and might further contribute to PECs biosynthesis in A. sinensis. Our findings provide valuable insights into the molecular evolution of the PKS gene family in A. sinensis and serve as a foundation for advancing PEC production through the bioengineering of gene clusters. Ultimately, this contribution is expected to shed light on the mechanism underlying agarwood formation.


Assuntos
Evolução Molecular , Thymelaeaceae , Thymelaeaceae/genética , Thymelaeaceae/enzimologia , Filogenia , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Nicotiana/enzimologia , Nicotiana/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
17.
Int J Biol Macromol ; 244: 125302, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37315664

RESUMO

Trees in the genus Aquilaria produce agarwood, a valuable resin used in medicine, perfumes, and incense. 2-(2-Phenethyl)chromones (PECs) are characteristic components of agarwood; however, molecular mechanisms underlying PEC biosynthesis and regulation remain largely unknown. The R2R3-MYB transcription factors play important regulatory roles in the biosynthesis of various secondary metabolites. In this study, 101 R2R3-MYB genes in Aquilaria sinensis were systematically identified and analyzed at the genome-wide level. Transcriptomic analysis revealed that 19 R2R3-MYB genes were significantly regulated by an agarwood inducer, and showed significant correlations with PEC accumulation. Expression and evolutionary analyses revealed that AsMYB054, a subgroup 4 R2R3-MYB, was negatively correlated with PEC accumulation. AsMYB054 was located in the nucleus and functioned as a transcriptional repressor. Moreover, AsMYB054 could bind to the promoters of the PEC biosynthesis related genes AsPKS02 and AsPKS09, and inhibit their transcriptional activity. These findings suggested that AsMYB054 functions as a negative regulator of PEC biosynthesis via the inhibition of AsPKS02 and AsPKS09 in A. sinensis. Our results provide a comprehensive understanding of the R2R3-MYB subfamily in A. sinensis and lay a foundation for further functional analyses of R2R3-MYB genes in PEC biosynthesis.


Assuntos
Cromonas , Thymelaeaceae , Genes myb , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Thymelaeaceae/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Cell Death Discov ; 9(1): 382, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37852974

RESUMO

Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases. NSCLC patients often have poor prognosis demanding urgent identification of novel biomarkers and potential therapeutic targets. KCNAB2 (regulatory beta subunit2 of voltage-gated potassium channel), encoding aldosterone reductase, plays a pivotal role in regulating potassium channel activity. In this research, we tested the expression of KCNAB2 as well as its potential functions in human NSCLC. Bioinformatics analysis shows that expression of KCNAB2 mRNA is significantly downregulated in human NSCLC, correlating with poor overall survival. In addition, decreased KCNAB2 expression was detected in different NSCLC cell lines and local human NSCLC tissues. Exogenous overexpression of KCNAB2 potently suppressed growth, proliferation and motility of established human NSCLC cells and promoted NSCLC cells apoptosis. In contrast, CRISPR/Cas9-induced KCNAB2 knockout further promoted the malignant biological behaviors of NSCLC cells. Protein chip analysis in the KCNAB2-overexpressed NSCLC cells revealed that KCNAB2 plays a possible role in AKT-mTOR cascade activation. Indeed, AKT-mTOR signaling activation was potently inhibited following KCNAB2 overexpression in NSCLC cells. It was however augmented by KCNAB2 knockout. In vivo, the growth of subcutaneous KCNAB2-overexpressed A549 xenografts was significantly inhibited. Collectively, KCNAB2 could be a novel effective gene for prognosis prediction of NSCLC. Targeting KCNAB2 may lead to the development of advanced therapies.

19.
Front Plant Sci ; 14: 1243323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719219

RESUMO

Introduction: Agarwood, the dark-brown resin produced by Aquilaria trees, has been widely used as incense, spice, perfume or traditional medicine and 2-(2-phenethyl) chromones (PECs) are the key markers responsible for agarwood formation. But the biosynthesis and regulatory mechanism of PECs were still not illuminated. The transcription factor of basic leucine zipper (bZIP) presented the pivotal regulatory roles in various secondary metabolites biosynthesis in plants, which might also contribute to regulate PECs biosynthesis. However, molecular evolution and function of bZIP are rarely reported in Malvales plants, especially in Aquilaria trees. Methods and results: Here, 1,150 bZIPs were comprehensively identified from twelve Malvales and model species genomes and the evolutionary process were subsequently analyzed. Duplication types and collinearity indicated that bZIP is an ancient or conserved TF family and recent whole genome duplication drove its evolution. Interesting is that fewer bZIPs in A. sinensis than that species also experienced two genome duplication events in Malvales. 62 AsbZIPs were divided into 13 subfamilies and gene structures, conservative domains, motifs, cis-elements, and nearby genes of AsbZIPs were further characterized. Seven AsbZIPs in subfamily D were significantly regulated by ethylene and agarwood inducer. As the typical representation of subfamily D, AsbZIP14 and AsbZIP41 were localized in nuclear and potentially regulated PECs biosynthesis by activating or suppressing type III polyketide synthases (PKSs) genes expression via interaction with the AsPKS promoters. Discussion: Our results provide a basis for molecular evolution of bZIP gene family in Malvales and facilitate the understanding the potential functions of AsbZIP in regulating 2-(2-phenethyl) chromone biosynthesis and agarwood formation.

20.
Cell Death Dis ; 14(2): 157, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828810

RESUMO

Pancreatic cancer has an extremely poor prognosis. Here we examined expression, potential functions and underlying mechanisms of MXRA5 (matrix remodeling associated 5) in pancreatic cancer. Bioinformatics studies revealed that MXRA5 transcripts are significantly elevated in pancreatic cancer tissues, correlating with the poor overall survival, high T-stage, N1 and pathologic stage of the patients. MXRA5 mRNA and protein expression is significantly elevated in microarray pancreatic cancer tissues and different pancreatic cancer cells. In primary and immortalized (BxPC-3 and PANC-1 lines) pancreatic cancer cells, shRNA-induced MXRA5 silencing or CRISPR/Cas9-mediated MXRA5 knockout suppressed cell survival, proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), while provoking cell apoptosis. Conversely, forced overexpression of MXRA5 further promoted pancreatic cancer cell progression and EMT. Bioinformatics studies and the protein chip analyses revealed that differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in MXRA5-overexpressed primary pancreatic cancer cells were enriched in the PI3K-Akt-mTOR cascade. Indeed, Akt-mTOR activation in primary human pancreatic cancer cells was inhibited by MXRA5 shRNA or knockout, but was augmented following MXRA5 overexpression. In vivo, the growth of MXRA5 KO PANC-1 xenografts was largely inhibited in nude mice. Moreover, intratumoral injection of adeno-associated virus-packed MXRA5 shRNA potently inhibited primary pancreatic cancer cell growth in nude mice. Akt-mTOR activation was also largely inhibited in the MXRA5-depleted pancreatic cancer xenografts. Contrarily MXRA5 overexpression promoted primary pancreatic cancer cell growth in nude mice. Together, overexpressed MXRA5 is important for pancreatic cancer cell growth possibly through promoting EMT and Akt-mTOR activation. MXRA5 could be a potential therapeutic oncotarget for pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Neoplasias Pancreáticas/patologia , RNA Interferente Pequeno/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA