Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892128

RESUMO

Congenital heart defects (CHDs) are common human birth defects. Genetic mutations potentially cause the exhibition of various pathological phenotypes associated with CHDs, occurring alone or as part of certain syndromes. Zebrafish, a model organism with a strong molecular conservation similar to humans, is commonly used in studies on cardiovascular diseases owing to its advantageous features, such as a similarity to human electrophysiology, transparent embryos and larvae for observation, and suitability for forward and reverse genetics technology, to create various economical and easily controlled zebrafish CHD models. In this review, we outline the pros and cons of zebrafish CHD models created by genetic mutations associated with single defects and syndromes and the underlying pathogenic mechanism of CHDs discovered in these models. The challenges of zebrafish CHD models generated through gene editing are also discussed, since the cardiac phenotypes resulting from a single-candidate pathological gene mutation in zebrafish might not mirror the corresponding human phenotypes. The comprehensive review of these zebrafish CHD models will facilitate the understanding of the pathogenic mechanisms of CHDs and offer new opportunities for their treatments and intervention strategies.


Assuntos
Modelos Animais de Doenças , Cardiopatias Congênitas , Peixe-Zebra , Peixe-Zebra/genética , Animais , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Humanos , Mutação , Edição de Genes/métodos , Fenótipo
2.
Clin Genet ; 103(6): 617-624, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36843357

RESUMO

The Popeye domain-containing protein 3 (POPDC3), a transmembrane protein with a unique cyclic adenosine monophosphate (cAMP) binding site, is widely expressed in mammalian tissues, with the highest levels of expression in skeletal muscle. POPDC3 plays a key role in many physiological and pathological processes and is considered a candidate biomarker and potential therapeutic target of cancer. In addition, POPDC3 gene variants have been associated with limb-girdle muscular dystrophy (LGMD) type 26. However, there are only a few studies on the biological role of POPDC3, interacting proteins, potential downstream targets, and regulated signaling pathways. Therefore, this review focuses on the structure of POPDC3 protein, interacting molecules, and the role and mechanism in cancer, and in cardiac and skeletal muscle, and to review the current research progress of POPDC3 and propose possible future study directions.


Assuntos
Músculo Estriado , Distrofia Muscular do Cíngulo dos Membros , Neoplasias , Animais , Humanos , Moléculas de Adesão Celular/genética , Homeostase , Mamíferos/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo
3.
Pharm Biol ; 60(1): 1670-1678, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36063102

RESUMO

CONTEXT: Bushen Yiyuan recipe (BYR) is an effective Chinese prescription with antifatigue and antioxidation effects. OBJECTIVE: The effects of BYR on testosterone synthesis in rat Leydig cells with exercise-induced low serum testosterone levels (EILST) are assessed. MATERIALS AND METHODS: Thirty-two Sprague-Dawley rats were chronically trained for 6 weeks to establish an EILST model. EILST rats were divided into model (physiological saline), EFE (700 mg/kg ethanol extract of Epimedii folium, the dried leaves of Epimedium brevicornu Maxim [Berberidaceae]), and BYR groups (350 and 700 mg/kg) for 6 weeks. Expression of HMG-CoA, LDL-R, SR-BI, STAR and CYP11A1 were quantified by RT qPCR and Western blots. RESULTS: Compared with the model group (115.52 ± 13.05 µg/dL; 67.83 ± 14.29; 0.32 ± 0.04; 0.33 ± 0.02; 0.38 ± 0.01), serum testosterone, testosterone/cortisol ratio, HMG-CoA, STAR and CYP11A1 relative protein expression significantly increased in low-dose BYR (210.60 ± 5.08 µg/dL; 119.38 ± 13.02; 0.47 ± 0.01; 0.46 ± 0.03; 0.46 ± 0.02), high-dose BYR (220.57 ± 14.71 µg/dL; 124.26 ± 14.79; 0.49 ± 0.02; 0.42 ± 0.03; 0.51 ± 0.02), and EFE groups (206.83 ± 5.54 µg/dL; 119.53 ± 25.04; 0.45 ± 0.02; 0.42 ± 0.02; 0.41 ± 0.02) (all p < 0.01, except for CYP11A1 in EFE group). HMG-CoA, STAR and CYP11A1 mRNA relative expression significantly increased in low-dose and high-dose BYR group compared to model group (all p < 0.01). CONCLUSIONS: BYR affects endogenous cholesterol synthesis and testosterone synthesis to prevent and treat EILST levels in rats. It can improve the body's sports ability.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Células Intersticiais do Testículo , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Testosterona
4.
Am J Physiol Heart Circ Physiol ; 320(4): H1634-H1645, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33635162

RESUMO

Wnt/ß-catenin signaling plays a key role in pathological cardiac remodeling in adults. The identification of a tissue-specific Wnt/ß-catenin interaction factor may provide a tissue-specific clinical targeting strategy. Drosophila Pygo encodes the core interaction factor of Wnt/ß-catenin. Two Pygo homologs (Pygo1 and Pygo2) have been identified in mammals. Different from the ubiquitous expression profile of Pygo2, Pygo1 is enriched in cardiac tissue. However, the role of Pygo1 in mammalian cardiac disease is yet to be elucidated. In this study, we found that Pygo1 was upregulated in human cardiac tissues with pathological hypertrophy. Cardiac-specific overexpression of Pygo1 in mice spontaneously led to cardiac hypertrophy accompanied by declined cardiac function, increased heart weight/body weight and heart weight/tibial length ratios, and increased cell size. The canonical ß-catenin/T-cell transcription factor 4 (TCF4) complex was abundant in Pygo1-overexpressing transgenic (Pygo1-TG) cardiac tissue, and the downstream genes of Wnt signaling, that is, Axin2, Ephb3, and c-Myc, were upregulated. A tail vein injection of ß-catenin inhibitor effectively rescued the phenotype of cardiac failure and pathological myocardial remodeling in Pygo1-TG mice. Furthermore, in vivo downregulated pygo1 during cardiac hypertrophic condition antagonized agonist-induced cardiac hypertrophy. Therefore, our study is the first to present in vivo evidence demonstrating that Pygo1 regulates pathological cardiac hypertrophy in a canonical Wnt/ß-catenin-dependent manner, which may provide new clues for tissue-specific clinical treatment via targeting this pathway.NEW & NOTEWORTHY In this study, we found that Pygo1 is associated with human pathological hypertrophy. Cardiac-specific overexpression of Pygo1 in mice spontaneously led to cardiac hypertrophy. Meanwhile, cardiac function was improved when expression of Pygo1 was interfered in hypertrophy-model mice. Our study is the first to present in vivo evidence demonstrating that Pygo1 regulates pathological cardiac hypertrophy in a canonical Wnt/ß-catenin-dependent manner, which may provide new clues for a tissue-specific clinical treatment targeting this pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Via de Sinalização Wnt , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Modelos Animais de Doenças , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/prevenção & controle , Hipertrofia Ventricular Esquerda/induzido quimicamente , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Hipertrofia Ventricular Esquerda/patologia , Isoproterenol , Masculino , Camundongos Transgênicos , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Receptor EphB3/genética , Receptor EphB3/metabolismo , Tiazolidinas/farmacologia , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores
5.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34681600

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a common disease that causes serious liver damage. Exercise is recognized as a non-pharmacological tool to improve the pathology of NAFLD. However, the antioxidative effects and mechanisms by which exercise ameliorates NAFLD remain unclear. The present study conducted exercise training on zebrafish during a 12-week high-fat feeding period to study the antioxidant effect of exercise on the liver. We found that swimming exercise decreased lipid accumulation and improved pathological changes in the liver of high-fat diet-fed zebrafish. Moreover, swimming alleviated NOX4-derived reactive oxygen species (ROS) overproduction and reduced methanedicarboxylic aldehyde (MDA) levels. We also examined the anti-apoptotic effects of swimming and found that it increased the expression of antiapoptotic factor bcl2 and decreased the expression of genes associated with apoptosis (caspase3, bax). Mechanistically, swimming intervention activated SIRT1/AMPK signaling-mediated lipid metabolism and inflammation as well as enhanced AKT and NRF2 activation and upregulated downstream antioxidant genes. In summary, exercise attenuates pathological changes in the liver induced by high-fat diets. The underlying mechanisms might be related to NRF2 and mediated by SIRT1/AMPK signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fígado/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Animais , Antioxidantes , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Interleucina-1beta/metabolismo , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , NADPH Oxidase 4/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo , Condicionamento Físico Animal , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
6.
J Muscle Res Cell Motil ; 35(5-6): 259-65, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25433557

RESUMO

CXXC5 is a member of the CXXC-type zinc-finger domain containing protein family, which is suggested to function in gene transcription, cell adhesion and cytoskeleton organization. Previous studies have revealed that CXXC5 is expressed in skeletal muscle, but whether it regulates skeletal myogenesis is yet unknown. Here, we screened for the possible signaling pathways in which CXXC5 might participate using luciferase gene reporters. The results indicated that CXXC5 significantly increased the activities of the promoters of genes involved in skeletal muscle differentiation. We therefore studied the role of CXXC5 during skeletal myogenesis in C2C12 myoblasts. Our findings suggest that overexpression of CXXC5 in C2C12 myoblasts facilitated myocyte differentiation, while RNAi interference of CXXC5 significantly inhibited the differentiation of C2C12 myoblasts. This study suggests that CXXC5 plays a significant role in regulating skeletal myogenesis.


Assuntos
Proteínas de Transporte/metabolismo , Células Musculares/citologia , Células Musculares/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Proteínas de Transporte/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Proteínas de Ligação a DNA , Células HEK293 , Humanos , Transdução de Sinais , Fatores de Transcrição
7.
Metabolism ; : 155972, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972476

RESUMO

Sarcopenia is one of the most common skeletal muscle disorders and is characterized by infirmity and disability. While extensive research has focused on elucidating the mechanisms underlying the progression of sarcopenia, further comprehensive insights into its pathogenesis are necessary to identify new preventive and therapeutic approaches. The involvement of inflammasomes in sarcopenia is widely recognized, with particular emphasis on the NLRP3 (NLR family pyrin domain containing 3) inflammasome. In this review, we aim to elucidate the underlying mechanisms of the NLRP3 inflammasome and its relevance in sarcopenia of various etiologies. Furthermore, we highlight interventions targeting the NLRP3 inflammasome in the context of sarcopenia and discuss the current limitations of our knowledge in this area.

8.
Yi Chuan ; 35(4): 511-8, 2013 Apr.
Artigo em Zh | MEDLINE | ID: mdl-23659942

RESUMO

Using the promoter for cardiac myosin light chain 2 (cmlc2) gene, an expression vector pTol2-cmlc2-IRES- EGFP for making heart-specific expression of exogenous gene in transgenic zebrafish was generated previously. Here, we reported the construction of a transgenic zebrafish line which stably expresses EGFP using this vector, and the effects of EGFP on the heart development and cardiac function of this transgenic zebrafish line were preliminarily analyzed. The results showed that the green fluorescence signal of cmlc2:EGFP line under fluorescence microscopy specifically expressed in heart and faithfully recapitulated both the spatial and temporal expression patterns of endogenous cmlc2 gene revealed by in situ hybridization in the early developmental stages. The cardiac morphology and development of this transgenic zebrafish line remained to be normal. Furthermore, the heart morphology and physiological function of this transgenic line have been analyzed using M-mode analysis. The results showed that there was no significant difference between the cmlc2:EGFP and the wild type lines with respect to heart period, heart rate, diastolic surface area and systolic surface area, and fractional area change. No tachyarrhythmia was observed in the embryos from either line. Thus, the excessive expression of EGFP in this transgenic line seemed to exert no detrimental effects on the function and development of zebrafish hearts during early stages. Our study laid a foundation for the construction of exogenous gene transgenic line using pTol2-cmlc2-IRES-EGFP vector to study the function of genes that expressed in heart.


Assuntos
Proteínas de Fluorescência Verde/genética , Miocárdio/metabolismo , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica , Vetores Genéticos/genética , Coração/fisiologia , Cadeias Leves de Miosina/genética , Especificidade de Órgãos , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
9.
FEBS J ; 290(6): 1519-1530, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36164851

RESUMO

Sarcopenia is a common disorder that leads to a progressive decrease in skeletal muscle function in elderly people. Exercise effectively prevents or delays the onset and progression of sarcopenia. However, the molecular mechanisms underlying how exercise intervention improves skeletal muscle atrophy remain unclear. In this study, we found that 21-month-old zebrafish had a decreased swimming ability, reduced muscle fibre cross-sectional area, unbalanced protein synthesis, and degradation, increased oxidative stress, and mitochondrial dysfunction, which suggests zebrafish are a valuable model for sarcopenia. Eight weeks of exercise intervention attenuated these pathological changes in sarcopenia zebrafish. Moreover, the effects of exercise on mitochondrial dysfunction were associated with the activation of the AMPK/SIRT1/PGC-1α axis and 15-PGDH downregulation. Our results reveal potential therapeutic targets and indicators to treat age-related sarcopenia using exercise intervention.


Assuntos
Terapia por Exercício , Mitocôndrias , Doenças Mitocondriais , Músculo Esquelético , Sarcopenia , Peixe-Zebra , Animais , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/prevenção & controle , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sarcopenia/genética , Sarcopenia/prevenção & controle , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
Front Endocrinol (Lausanne) ; 14: 1162485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284220

RESUMO

Introduction: Recent reports indicate that mitochondrial quality decreases during non-alcoholic fatty liver disease (NAFLD) progression, and targeting the mitochondria may be a possible treatment for NAFLD. Exercise can effectively slow NAFLD progression or treat NAFLD. However, the effect of exercise on mitochondrial quality in NAFLD has not yet been established. Methods: In the present study, we fed zebrafish a high-fat diet to model NAFLD, and subjected the zebrafish to swimming exercise. Results: After 12 weeks, swimming exercise significantly reduced high-fat diet-induced liver injury, and reduced inflammation and fibrosis markers. Swimming exercise improved mitochondrial morphology and dynamics, inducing upregulation of optic atrophy 1(OPA1), dynamin related protein 1 (DRP1), and mitofusin 2 (MFN2) protein expression. Swimming exercise also activated mitochondrial biogenesis via the sirtuin 1 (SIRT1)/ AMP-activated protein kinase (AMPK)/ PPARgamma coactivator 1 alpha (PGC1α) pathway, and improved the mRNA expression of genes related to mitochondrial fatty acid oxidation and oxidative phosphorylation. Furthermore, we find that mitophagy was suppressed in NAFLD zebrafish liver with the decreased numbers of mitophagosomes, the inhibition of PTEN-induced kinase 1 (PINK1) - parkin RBR E3 ubiquitin protein ligase (PARKIN) pathway and upregulation of sequestosome 1 (P62) expression. Notably, swimming exercise partially recovered number of mitophagosomes, which was associated with upregulated PARKIN expression and decreased p62 expression. Discussion: These results demonstrate that swimming exercise could alleviate the effects of NAFLD on the mitochondria, suggesting that exercise may be beneficial for treating NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Peixe-Zebra/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases , Terapia por Exercício
11.
Exp Gerontol ; 180: 112265, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482108

RESUMO

Sarcopenia is a common skeletal muscle degenerative disease characterized by decreased skeletal muscle mass and mitochondrial dysfunction that involves microRNAs (miR) as regulatory factors in various pathways. Exercise reduces age-related oxidative damage and chronic inflammation and increases autophagy, among others. Moreover, whether aerobic exercise can regulate mitochondrial homeostasis by modulating the miR-128/insulin-like growth factor-1 (IGF-1) signaling pathway and can improve sarcopenia requires further investigation. Interestingly, zebrafish have been used as a model for aging research for over a decade due to their many outstanding advantages. Therefore, we established a model of zebrafish sarcopenia using d-galactose immersion and observed substantial changes, including reduced skeletal muscle cross-sectional area, increased tissue fibrosis, decreased motility, increased skeletal muscle reactive oxygen species, and notable alterations in mitochondrial morphology and function. We found that miR-128 expression was considerably upregulated, where as Igf1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha were significantly downregulated; moreover, mitochondrial homeostasis was reduced. Four weeks of aerobic exercise delayed sarcopenia progression and prevented the disruption of mitochondrial function and homeostasis. The genes related to atrophy and miR-128 were downregulated, Igf1 expression was considerably upregulated, and the phosphorylation levels of Pi3k, Akt, and Foxo3a were upregulated. Furthermore, mitochondrial respiration and homeostasis were enhanced. In conclusion, aerobic exercise improved skeletal muscle quality and function via the miR-128/IGF-1 signaling pathway, consequently ameliorating mitochondrial homeostasis in aging skeletal muscle.


Assuntos
MicroRNAs , Sarcopenia , Animais , Sarcopenia/patologia , Peixe-Zebra/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Galactose/metabolismo , Músculo Esquelético/fisiologia , Mitocôndrias/metabolismo , Envelhecimento , MicroRNAs/genética , MicroRNAs/metabolismo , Homeostase
12.
Life (Basel) ; 12(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36013390

RESUMO

Excessive alcohol consumption can cause alcoholic myopathy, but the molecular mechanism is still unclear. In this study, zebrafish were exposed to 0.5% alcohol for eight weeks to investigate the effect of alcohol on skeletal muscle and its molecular mechanism. The results showed that the body length, body weight, cross-sectional area of the skeletal muscle fibers, Ucrit, and MO2max of the zebrafish were significantly decreased after alcohol exposure. The expression of markers of skeletal muscle atrophy and autophagy was increased, and the expression of P62 was significantly reduced. The content of ROS, the mRNA expression of sod1 and sod2, and the protein expression of Nox2 were significantly increased. In addition, we found that the inflammatory factors Il1ß and Tnfα were significantly enriched in skeletal muscle, and the expression of the HMGB1/TLR4/NF-κB signaling axis was also significantly increased. In summary, in this study, we established a zebrafish model of alcohol-induced skeletal muscle atrophy and further elucidated its pathogenesis.

13.
Nutrients ; 14(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35565942

RESUMO

Obesity is a highly prevalent disease that can induce metabolic syndrome and is associated with a greater risk of muscular atrophy. Mitochondria play central roles in regulating the physiological metabolism of skeletal muscle; however, whether a decreased mitochondrial function is associated with impaired muscle function is unclear. In this study, we evaluated the effects of a high-fat diet on muscle mitochondrial function in a zebrafish model of sarcopenic obesity (SOB). In SOB zebrafish, a significant decrease in exercise capacity and skeletal muscle fiber cross-sectional area was detected, accompanied by high expression of the atrophy-related markers Atrogin-1 and muscle RING-finger protein-1. Zebrafish with SOB exhibited inhibition of mitochondrial biogenesis and fatty acid oxidation as well as disruption of mitochondrial fusion and fission in atrophic muscle. Thus, our findings showed that muscle atrophy was associated with SOB-induced mitochondrial dysfunction. Overall, these results showed that the SOB zebrafish model established in this study may provide new insights into the development of therapeutic strategies to manage mitochondria-related muscular atrophy.


Assuntos
Dieta Hiperlipídica , Sarcopenia , Animais , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Obesidade/metabolismo , Sarcopenia/metabolismo , Natação , Peixe-Zebra
14.
J Physiol Sci ; 71(1): 33, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749643

RESUMO

Herein, we aimed to establish an aerobic exercise-induced physiological myocardial hypertrophy zebrafish (Danio rerio) model and to explore the underlying molecular mechanism. After 4 weeks of aerobic exercise, the AMR and Ucrit of the zebrafish increased and the hearts were enlarged, with thickened myocardium, an increased number of myofilament attachment points in the Z-line, and increased compaction of mitochondrial cristae. We also found that the mTOR signaling pathway, angiogenesis, mitochondrial fusion, and fission event, and mitochondrial autophagy were associated with the adaptive changes in the heart during training. In addition, the increased mRNA expression of genes related to fatty acid oxidation and antioxidation suggested that the switch of energy metabolism and the maintenance of mitochondrial homeostasis induced cardiac physiological changes. Therefore, the zebrafish heart physiological hypertrophy model constructed in this study can be helpful in investigating the cardioprotective mechanisms in response to aerobic exercise.


Assuntos
Condicionamento Físico Animal , Peixe-Zebra , Animais , Cardiomegalia , Coração , Miocárdio , Transdução de Sinais
15.
Biology (Basel) ; 10(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34439993

RESUMO

Long-term imbalance between fatigue and recovery may eventually lead to muscle weakness or even atrophy. We previously reported that excessive exercise induces pathological cardiac hypertrophy. However, the effect of excessive exercise on the skeletal muscles remains unclear. In the present study, we successfully established an excessive-exercise-induced skeletal muscle atrophy zebrafish model, with decreased muscle fiber size, critical swimming speed, and maximal oxygen consumption. High-throughput RNA-seq analysis identified differentially expressed genes in the model system compared with control zebrafish. Gene ontology and KEGG enrichment analysis revealed that the upregulated genes were enriched in autophagy, homeostasis, circadian rhythm, response to oxidative stress, apoptosis, the p53 signaling pathway, and the FoxO signaling pathway. Protein-protein interaction network analysis identified several hub genes, including keap1b, per3, ulk1b, socs2, esrp1, bcl2l1, hsp70, igf2r, mdm2, rab18a, col1a1a, fn1a, ppih, tpx2, uba5, nhlrc2, mcm4, tac1, b3gat3, and ddost, that correlate with the pathogenesis of skeletal muscle atrophy induced by excessive exercise. The underlying regulatory pathways and muscle-pressure-response-related genes identified in the present study will provide valuable insights for prescribing safe and accurate exercise programs for athletes and the supervision and clinical treatment of muscle atrophy induced by excessive exercise.

16.
Int Immunopharmacol ; 101(Pt B): 108176, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34655851

RESUMO

15-hydroxyprostaglandin dehydrogenase (15-PGDH; encoded by HPGD) is ubiquitously expressed in mammalian tissues and catalyzes the degradation of prostaglandins (PGs; mainly PGE2, PGD2, and PGF2α) in a process mediated by solute carrier organic anion transport protein family member 2A1 (SLCO2A1; also known as PGT, OATP2A1, PHOAR2, or SLC21A2). As a key enzyme, 15-PGDH catalyzes the rapid oxidation of 15-hydroxy-PGs into 15-keto-PGs with lower biological activity. Increasing evidence suggests that 15-PGDH plays a key role in many physiological and pathological processes in mammals and is considered a potential pharmacological target for preventing organ damage, promoting bone marrow graft recovery, and enhancing tissue regeneration. Additionally, results of whole-exome analyses suggest that recessive inheritance of an HPGD mutation is associated with idiopathic hypertrophic osteoarthropathy. Interestingly, as a tumor suppressor, 15-PGDH inhibits proliferation and induces the differentiation of cancer cells (including those associated with colorectal, lung, and breast cancers). Furthermore, a recent study identified 15-PGDH as a marker of aging tissue and a potential novel therapeutic target for resisting the complex pathology of aging-associated diseases. Here, we review and summarise recent information on the molecular functions of 15-PGDH and discuss its pathophysiological implications.


Assuntos
Envelhecimento/fisiologia , Hidroxiprostaglandina Desidrogenases/antagonistas & inibidores , Hidroxiprostaglandina Desidrogenases/metabolismo , Prostaglandinas/metabolismo , Animais , Biomarcadores/metabolismo , Hidroxiprostaglandina Desidrogenases/genética
17.
Front Physiol ; 11: 565307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329019

RESUMO

Exercise-induced cardiac remodeling has aroused public concern for some time, as sudden cardiac death is known to occur in athletes; however, little is known about the underlying mechanism of exercise-induced cardiac injury. In the present study, we established an excessive exercise-induced pathologic cardiac hypertrophy model in zebrafish with increased myocardial fibrosis, myofibril disassembly, mitochondrial degradation, upregulated expression of the pathological hypertrophy marker genes in the heart, contractile impairment, and cardiopulmonary function impairment. High-throughput RNA-seq analysis revealed that the differentially expressed genes were enriched in the regulation of autophagy, protein folding, and degradation, myofibril development, angiogenesis, metabolic reprogramming, and insulin and FoxO signaling pathways. FOXO proteins may be the core mediator of the regulatory network needed to promote the pathological response. Further, PPI network analysis showed that pik3c3, gapdh, fbox32, fzr1, ubox5, lmo7a, kctd7, fbxo9, lonrf1l, fbxl4, nhpb2l1b, nhp2, fbl, hsp90aa1.1, snrpd3l, dhx15, mrto4, ruvbl1, hspa8b, and faub are the hub genes that correlate with the pathogenesis of pathological cardiac hypertrophy. The underlying regulatory pathways and cardiac pressure-responsive molecules identified in the present study will provide valuable insights for the supervision and clinical treatment of pathological cardiac hypertrophy induced by excessive exercise.

18.
Curr Mol Med ; 20(4): 299-306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31663468

RESUMO

BACKGROUND: Previously, we first identified the human tripartite motifcontaining protein 45 (TRIM45) acts as a novel transcriptional repressor in mitogenactivated protein kinase (MAPK) signaling pathway. After that, the inhibitory role of TRIM45 in the development of tumor was gradually unveiled. However, the function of TRIM45 in the tumorigenesis of lung cancer has not been characterized. METHODS AND RESULTS: In this study, we found that TRIM45 was up-regulated in earlystage human non-small-cell lung cancer (NSCLC) tissues. Overexpression of TRIM45 in lung cancer cells induces G1 arrest and promotes apoptosis, which accompanied by upregulated expression of RB, p16, p53, p27Kip1, and Caspase3 and down-regulated expression of CyclinE1 and CyclinE2. Further detection of the expression of the molecules in the MAPK signaling pathway revealed that overexpression of TRIM45 in lung cancer cells promotes phosphorylated p38 (p-p38) activation and inhibits phosphorylated ERK (p-ERK) activation. In accordance with this, p-p38 is increased while p-ERK is decreased in lung cancer tissues. CONCLUSION: These findings indicate that TRIM45 plays an inhibitory role in the tumorigenesis of lung cancer. High-level expression of TRIM45 in lung cancer tissue may promote cell apoptosis by activating p38 signal and inhibit proliferation by down-regulating p-ERK, which provides a new clue for understanding the tumorigenesis of lung cancer.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Repressoras/metabolismo , Células A549 , Apoptose/genética , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Pontos de Checagem do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Sistema de Sinalização das MAP Quinases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Regulação para Cima/genética
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2492-2495, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946403

RESUMO

Physical activity (PA) is widely recognized as one of the important elements of personal healthy life. To date, as the development of wearable sensing technologies, it is possible to utilize wearable devices and machine learning algorithms to efficiently and accurately monitor PA types, intensity and its associated human pattern for many health applications. But there is a trade-off between less-attachment of wearable devices and achievement of high accuracy in existing PA recognition studies. This paper attempts to investigate possible utilisation of Artificial Neural Networks (ANN) achieving high recognition accuracy of PA using less-attachments of wearable devices. Following a four-steps designed experimental protocol, we collect the real activities dataset with only belt and wristband devices from 10 healthy subjects at home and gym environment. The parameters of typical PA recognition with ANN including time window sizes, features and activation functions are evaluated under 24 different subjects of activities. The experimental results indicate that ANN dealing with belt and wristband data can achieve satisfactory PA recognition results in dynamic and sedentary activities but suffers from transitional activities in both environments.


Assuntos
Exercício Físico , Aprendizado de Máquina , Redes Neurais de Computação , Dispositivos Eletrônicos Vestíveis , Algoritmos , Humanos
20.
Sci China Life Sci ; 59(12): 1324-1331, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27614751

RESUMO

Magnetoreception is essential for magnetic orientation in animal migration. The molecular basis for magnetoreception has recently been elucidated in fruitfly as complexes between the magnetic receptor magnetoreceptor (MagR) and its ligand cryptochrome (Cry). MagR and Cry are present in the animal kingdom. However, it is unknown whether they perform a conserved role in diverse animals. Here we report the identification and expression of zebrafish MagR and Cry homologs towards understanding their roles in lower vertebrates. A single magr gene and 7 cry genes are present in the zebrafish genome. Zebrafish has four cry1 genes (cry1aa, cry1ab, cry1ba and cry1bb) homologous to human CRY1 and a single ortholog of human CRY2 as well as 2 cry-like genes (cry4 and cry5). By RT-PCR, magr exhibited a high level of ubiquitous RNA expression in embryos and adult organs, whereas cry genes displayed differential embryonic and adult expression. Importantly, magr depletion did not produce apparent abnormalities in organogenesis. Taken together, magr and cry2 exist as a single copy gene, whereas cry1 exists as multiple gene duplicates in zebrafish. Our result suggests that magr may play a dispensable role in organogenesis and predicts a possibility to generate magr mutants for analyzing its role in zebrafish.


Assuntos
Criptocromos/genética , Proteínas Ferro-Enxofre/genética , Mecanorreceptores/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Criptocromos/classificação , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Ferro-Enxofre/classificação , Magnetismo , Mecanorreceptores/classificação , Mecanotransdução Celular/genética , Organogênese/genética , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA