Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 425(6955): 264-7, 2003 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-13679908

RESUMO

The most massive galaxies in the present-day Universe are found to lie in the centres of rich clusters. They have old, coeval stellar populations suggesting that the bulk of their stars must have formed at early epochs in spectacular starbursts, which should be luminous phenomena when observed at submillimetre wavelengths. The most popular model of galaxy formation predicts that these galaxies form in proto-clusters at high-density peaks in the early Universe. Such peaks are indicated by massive high-redshift radio galaxies. Here we report deep submillimetre mapping of seven high-redshift radio galaxies and their environments. These data confirm not only the presence of spatially extended regions of massive star-formation activity in the radio galaxies themselves, but also in companion objects previously undetected at any wavelength. The prevalence, orientation, and inferred masses of these submillimetre companion galaxies suggest that we are witnessing the synchronous formation of the most luminous elliptical galaxies found today at the centres of rich clusters of galaxies.

2.
Nature ; 410(6825): 169-73, 2001 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11242069

RESUMO

The large-scale structure in the distribution of galaxies is thought to arise from the gravitational instability of small fluctuations in the initial density field of the Universe. A key test of this hypothesis is that forming superclusters of galaxies should generate a systematic infall of other galaxies. This would be evident in the pattern of recessional velocities, causing an anisotropy in the inferred spatial clustering of galaxies. Here we report a precise measurement of this clustering, using the redshifts of more than 141,000 galaxies from the two-degree-field (2dF) galaxy redshift survey. We determine the parameter beta = Omega0.6/b = 0.43 +/- 0.07, where Omega is the total mass-density parameter of the Universe and b is a measure of the 'bias' of the luminous galaxies in the survey. (Bias is the difference between the clustering of visible galaxies and of the total mass, most of which is dark.) Combined with the anisotropy of the cosmic microwave background, our results favour a low-density Universe with Omega approximately 0.3.

3.
Phys Rev Lett ; 89(6): 061301, 2002 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12190573

RESUMO

We constrain f(nu) identical with Omega(nu)/Omega(m), the fractional contribution of neutrinos to the total mass density in the Universe, by comparing the power spectrum of fluctuations derived from the 2 Degree Field Galaxy Redshift Survey with power spectra for models with four components: baryons, cold dark matter, massive neutrinos, and a cosmological constant. Adding constraints from independent cosmological probes we find f(nu)<0.13 (at 95% confidence) for a prior of 0.1

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA