Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Annu Rev Phys Chem ; 74: 193-218, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36696591

RESUMO

Ground-state Kohn-Sham density functional theory provides, in principle, the exact ground-state energy and electronic spin densities of real interacting electrons in a static external potential. In practice, the exact density functional for the exchange-correlation (xc) energy must be approximated in a computationally efficient way. About 20 mathematical properties of the exact xc functional are known. In this work, we review and discuss these known constraints on the xc energy and hole. By analyzing a sequence of increasingly sophisticated density functional approximations (DFAs), we argue that (a) the satisfaction of more exact constraints and appropriate norms makes a functional more predictive over the immense space of many-electron systems and (b) fitting to bonded systems yields an interpolative DFA that may not extrapolate well to systems unlike those in the fitting set. We discuss both how the class of well-described systems has grown along with constraint satisfaction and the possibilities for future functional development.

2.
J Chem Phys ; 160(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38180261

RESUMO

Because of an acquired obsession to understand as much as possible in a limited but important area of science and because of optimism, luck, and help from others, my life in science turned out to be much better than I or others could have expected or planned. This is the story of how that happened, and also the story of the groundstate density functional theory of electronic structure, told from a personal perspective.

3.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38341785

RESUMO

The enigmatic mechanism underlying unconventional high-temperature superconductivity, especially the role of lattice dynamics, has remained a subject of debate. Theoretical insights have long been hindered due to the lack of an accurate first-principles description of the lattice dynamics of cuprates. Recently, using the r2SCAN meta-generalized gradient approximation (meta-GGA) functional, we have been able to achieve accurate phonon spectra of an insulating cuprate YBa2Cu3O6 and discover significant magnetoelastic coupling in experimentally interesting Cu-O bond stretching optical modes [Ning et al., Phys. Rev. B 107, 045126 (2023)]. We extend this work by comparing Perdew-Burke-Ernzerhof and r2SCAN performances with corrections from the on-site Hubbard U and the D4 van der Waals (vdW) methods, aiming at further understanding on both the materials science side and the density functional side. We demonstrate the importance of vdW and self-interaction corrections for accurate first-principles YBa2Cu3O6 lattice dynamics. Since r2SCAN by itself partially accounts for these effects, the good performance of r2SCAN is now more fully explained. In addition, the performances of the Tao-Mo series of meta-GGAs, which are constructed in a different way from the strongly constrained and appropriately normed (SCAN) meta-GGA and its revised version r2SCAN, are also compared and discussed.

4.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38587222

RESUMO

Density functional approximations to the exchange-correlation energy can often identify strongly correlated systems and estimate their energetics through energy-minimizing symmetry-breaking. In particular, the binding energy curve of the strongly correlated chromium dimer is described qualitatively by the local spin density approximation (LSDA) and almost quantitatively by the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA), where the symmetry breaking is antiferromagnetic for both. Here, we show that a full Perdew-Zunger self-interaction-correction (SIC) to LSDA seems to go too far by creating an unphysical symmetry-broken state, with effectively zero magnetic moment but non-zero spin density on each atom, which lies ∼4 eV below the antiferromagnetic solution. A similar symmetry-breaking, observed in the atom, better corresponds to the 3d↑↑4s↑3d↓↓4s↓ configuration than to the standard 3d↑↑↑↑↑4s↑. For this new solution, the total energy of the dimer at its observed bond length is higher than that of the separated atoms. These results can be regarded as qualitative evidence that the SIC needs to be scaled down in many-electron regions.

5.
J Chem Phys ; 160(13)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38557836

RESUMO

VO2 is renowned for its electric transition from an insulating monoclinic (M1) phase, characterized by V-V dimerized structures, to a metallic rutile (R) phase above 340 K. This transition is accompanied by a magnetic change: the M1 phase exhibits a non-magnetic spin-singlet state, while the R phase exhibits a state with local magnetic moments. Simultaneous simulation of the structural, electric, and magnetic properties of this compound is of fundamental importance, but the M1 phase alone has posed a significant challenge to the density functional theory (DFT). In this study, we show none of the commonly used DFT functionals, including those combined with on-site Hubbard U to treat 3d electrons better, can accurately predict the V-V dimer length. The spin-restricted method tends to overestimate the strength of the V-V bonds, resulting in a small V-V bond length. Conversely, the spin-symmetry-breaking method exhibits the opposite trends. Each of these two bond-calculation methods underscores one of the two contentious mechanisms, i.e., Peierls lattice distortion or Mott localization due to electron-electron repulsion, involved in the metal-insulator transition in VO2. To elucidate the challenges encountered in DFT, we also employ an effective Hamiltonian that integrates one-dimensional magnetic sites, thereby revealing the inherent difficulties linked with the DFT computations.

6.
Proc Natl Acad Sci U S A ; 118(4)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33472975

RESUMO

Strong correlations within a symmetry-unbroken ground-state wavefunction can show up in approximate density functional theory as symmetry-broken spin densities or total densities, which are sometimes observable. They can arise from soft modes of fluctuations (sometimes collective excitations) such as spin-density or charge-density waves at nonzero wavevector. In this sense, an approximate density functional for exchange and correlation that breaks symmetry can be more revealing (albeit less accurate) than an exact functional that does not. The examples discussed here include the stretched H2 molecule, antiferromagnetic solids, and the static charge-density wave/Wigner crystal phase of a low-density jellium. Time-dependent density functional theory is used to show quantitatively that the static charge-density wave is a soft plasmon. More precisely, the frequency of a related density fluctuation drops to zero, as found from the frequency moments of the spectral function, calculated from a recent constraint-based wavevector- and frequency-dependent jellium exchange-correlation kernel.

7.
J Phys Chem A ; 127(1): 384-389, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36573497

RESUMO

The SCAN (strongly constrained and appropriately normed) meta-generalized gradient approximation (meta-GGA), which satisfies all 17 exact constraints that a meta-GGA can satisfy, accurately describes equilibrium bonds that are normally correlated. With symmetry breaking, it also accurately describes some sd equilibrium bonds that are strongly correlated. While sp equilibrium bonds are nearly always normally correlated, the C2 singlet ground state is known from correlated wave function theory to be a rare case of strong correlation in an sp equilibrium bond. Earlier work that calculated atomization energies of the molecular sequence B2, C2, O2, and F2 in the local spin density approximation (LSDA), the Perdew-Burke-Ernzerhof (PBE) GGA, and the SCAN meta-GGA, without symmetry breaking in the molecule, found that only SCAN was accurate enough to reveal an anomalous under-binding for C2. This work shows that spin symmetry breaking in singlet C2, which involves the appearance of net up- and down-spin densities on opposite sides (not ends) of the bond, corrects that underbinding, with a small SCAN atomization-energy error more like that of the other three molecules, suggesting that symmetry breaking with an advanced density functional might reliably describe strong correlation. This article also discusses some general aspects of symmetry breaking and the insights into strong correlation that symmetry breaking can bring. The normally correlated low-lying triplet excited state has the right vertical excitation energy in SCAN but not in LSDA or PBE, where the triplet is a false ground state. Fractional occupation numbers are found only for the symmetry-unbroken singlet and only in LSDA and PBE GGA.

8.
Proc Natl Acad Sci U S A ; 117(21): 11283-11288, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32393631

RESUMO

We gauge the importance of self-interaction errors in density functional approximations (DFAs) for the case of water clusters. To this end, we used the Fermi-Löwdin orbital self-interaction correction method (FLOSIC) to calculate the binding energy of clusters of up to eight water molecules. Three representative DFAs of the local, generalized gradient, and metageneralized gradient families [i.e., local density approximation (LDA), Perdew-Burke-Ernzerhof (PBE), and strongly constrained and appropriately normed (SCAN)] were used. We find that the overbinding of the water clusters in these approximations is not a density-driven error. We show that, while removing self-interaction error does not alter the energetic ordering of the different water isomers with respect to the uncorrected DFAs, the resulting binding energies are corrected toward accurate reference values from higher-level calculations. In particular, self-interaction-corrected SCAN not only retains the correct energetic ordering for water hexamers but also reduces the mean error in the hexamer binding energies to less than 14 meV/[Formula: see text] from about 42 meV/[Formula: see text] for SCAN. By decomposing the total binding energy into many-body components, we find that large errors in the two-body interaction in SCAN are significantly reduced by self-interaction corrections. Higher-order many-body errors are small in both SCAN and self-interaction-corrected SCAN. These results indicate that orbital-by-orbital removal of self-interaction combined with a proper DFA can lead to improved descriptions of water complexes.

9.
Proc Natl Acad Sci U S A ; 117(1): 68-72, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31843896

RESUMO

Realistic description of competing phases in complex quantum materials has proven extremely challenging. For example, much of the existing density-functional-theory-based first-principles framework fails in the cuprate superconductors. Various many-body approaches involve generic model Hamiltonians and do not account for the interplay between the spin, charge, and lattice degrees of freedom. Here, by deploying the recently constructed strongly constrained and appropriately normed (SCAN) density functional, we show how the landscape of competing stripe and magnetic phases can be addressed on a first-principles basis both in the parent insulator YBa2Cu3O6 and the near-optimally doped YBa2Cu3O7 as archetype cuprate compounds. In YBa2Cu3O7, we find many stripe phases that are nearly degenerate with the ground state and may give rise to the pseudogap state from which the high-temperature superconducting state emerges. We invoke no free parameters such as the Hubbard U, which has been the basis of much of the existing cuprate literature. Lattice degrees of freedom are found to be crucially important in stabilizing the various phases.

10.
Phys Chem Chem Phys ; 24(47): 28700-28781, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36269074

RESUMO

In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.


Assuntos
Ciência dos Materiais , Humanos
11.
J Chem Phys ; 156(3): 034109, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35065548

RESUMO

The strongly constrained and appropriately normed (SCAN) meta-GGA exchange-correlation functional [Sun et al., Phys. Rev. Lett. 115, 036402 (2015)] is constructed as a chemical environment-determined interpolation between two separate energy densities: one describes single-orbital electron densities accurately and another describes slowly varying densities accurately. To conserve constraints known for the exact exchange-correlation functional, the derivatives of this interpolation vanish in the slowly varying limit. While theoretically convenient, this choice introduces numerical challenges that degrade the functional's efficiency. We have recently reported a modification to the SCAN meta-GGA, termed restored-regularized-SCAN (r2SCAN) [Furness et al., J. Phys. Chem. Lett. 11, 8208 (2020)], that introduces two regularizations into SCAN, which improve its numerical performance at the expense of not recovering the fourth order term of the slowly varying density gradient expansion for exchange. Here, we show the derivation of a progression of density functional approximations [regularized SCAN (rSCAN), r++SCAN, r2SCAN, and r4SCAN] with increasing adherence to exact conditions while maintaining a smooth interpolation. The greater smoothness of r2SCAN seems to lead to better general accuracy than the additional exact constraint of SCAN or r4SCAN does.

12.
J Chem Phys ; 156(13): 134102, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395893

RESUMO

Density functional theory (DFT)-based descriptions of the adsorption of small molecules on transition metal ions are prone to self-interaction errors. Here, we show that such errors lead to a large over-estimation of adsorption energies of small molecules on Cu+, Zn+, Zn2+, and Mn+ in local spin density approximation (LSDA) and Perdew, Burke, Ernzerhof (PBE) generalized gradient approximation calculations compared to reference values computed using the coupled-cluster with single, doubles, and perturbative triple excitations method. These errors are significantly reduced by removing self-interaction using the Perdew-Zunger self-interaction correction (PZ-SIC) in the Fermi-Löwdin Orbital (FLO) SIC framework. In the case of FLO-PBE, typical errors are reduced to less than 0.1 eV. Analysis of the results using DFT energies evaluated on self-interaction-corrected densities [DFT(@FLO)] indicates that the density-driven contributions to the FLO-DFT adsorption energy corrections are roughly the same size in DFT = LSDA and PBE, but the total corrections due to removing self-interaction are larger in LSDA.

13.
J Chem Phys ; 155(23): 234110, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34937366

RESUMO

The atomization energies of molecules from first-principles density functional approximations improve from the local spin-density approximation to the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) to the strongly constrained and appropriately normed (SCAN) meta-GGA, and their sensitivities to non-spherical components of the density increase in the same order. Thus, these functional advances increase density sensitivity and imitate the exact constrained search over correlated wavefunctions better than that over ensembles. The diatomic molecules studied here, singlet C2 and F2 plus triplet B2 and O2, have cylindrically symmetric densities. Because the densities of the corresponding atoms are non-spherical, the approximate Kohn-Sham potentials for the atoms have a lower symmetry than that of the external (nuclear) potential so that the non-interacting wavefunctions are not eigenstates of the square of total orbital angular momentum, breaking a symmetry that yields a feature of the exact ground-state density. That spatial symmetry can be preserved by a non-self-consistent approach in which a self-consistent equilibrium-ensemble calculation is followed by integer re-occupation of the Kohn-Sham orbitals as the first of several steps. The symmetry-preserving approach is different from symmetry restoration based on projection. First-step space- (and space-spin-) symmetry preservation in atoms is shown to have a small effect on the atomization energies of molecules, quantifying earlier observations by Fertig and Kohn. Thus, the standard Kohn-Sham way of calculating atomization energies, with self-consistent symmetry breaking to minimize the energy, is justified at least for the common cases where the molecules cannot break symmetry. Unless symmetry breaking is allowed in the molecule, SCAN strongly underestimates the atomization energy of strongly correlated singlet C2.

14.
J Chem Phys ; 154(2): 024102, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33445898

RESUMO

The Perdew-Zunger self-interaction correction (PZ-SIC) removes unphysical electron self-interaction from calculations employing standard density functional approximations. Doing so improves many computed properties, bringing them into better agreement with experimental observations or with results from high-level quantum chemistry calculations. However, while PZ-SIC generally corrects in the right direction relative to the corresponding reference values, in many cases, it over-corrects. For this reason, scaled-down versions of PZ-SIC have been proposed and investigated. These approaches have mostly employed exterior scaling in which SIC correction terms are scaled in the same way at every point in space. Recently, a new local, or interior, scaling SIC method was proposed on non-empirical grounds to restore a property of the exact, but unknown, density functional that is broken in PZ-SIC. In this approach, the scaling at each point depends on the character of the charge density at that point. However, the local scaling can be done in various ways while still restoring the behavior of the exact functional. In this work, we compare and contrast the performance of various interior scaling approaches for addressing over-corrections of calculated molecular dipole moments and atomic polarizabilities and properties that reflect the nature of the electronic charge density.

15.
J Chem Phys ; 154(9): 094302, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685132

RESUMO

We study the importance of self-interaction errors in density functional approximations for various water-ion clusters. We have employed the Fermi-Löwdin orbital self-interaction correction (FLOSIC) method in conjunction with the local spin-density approximation, Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and strongly constrained and appropriately normed (SCAN) meta-GGA to describe binding energies of hydrogen-bonded water-ion clusters, i.e., water-hydronium, water-hydroxide, water-halide, and non-hydrogen-bonded water-alkali clusters. In the hydrogen-bonded water-ion clusters, the building blocks are linked by hydrogen atoms, although the links are much stronger and longer-ranged than the normal hydrogen bonds between water molecules because the monopole on the ion interacts with both permanent and induced dipoles on the water molecules. We find that self-interaction errors overbind the hydrogen-bonded water-ion clusters and that FLOSIC reduces the error and brings the binding energies into closer agreement with higher-level calculations. The non-hydrogen-bonded water-alkali clusters are not significantly affected by self-interaction errors. Self-interaction corrected PBE predicts the lowest mean unsigned error in binding energies (≤50 meV/H2O) for hydrogen-bonded water-ion clusters. Self-interaction errors are also largely dependent on the cluster size, and FLOSIC does not accurately capture the subtle variation in all clusters, indicating the need for further refinement.

16.
J Chem Phys ; 154(9): 094105, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685179

RESUMO

The Perdew-Zunger self-interaction correction (PZ-SIC) improves the performance of density functional approximations for the properties that involve significant self-interaction error (SIE), as in stretched bond situations, but overcorrects for equilibrium properties where SIE is insignificant. This overcorrection is often reduced by local scaling self-interaction correction (LSIC) of the PZ-SIC to the local spin density approximation (LSDA). Here, we propose a new scaling factor to use in an LSIC-like approach that satisfies an additional important constraint: the correct coefficient of the atomic number Z in the asymptotic expansion of the exchange-correlation (xc) energy for atoms. LSIC and LSIC+ are scaled by functions of the iso-orbital indicator zσ, which distinguishes one-electron regions from many-electron regions. LSIC+ applied to the LSDA works better for many equilibrium properties than LSDA-LSIC and the Perdew, Burke, and Ernzerhof generalized gradient approximation (GGA), and almost close to the strongly constrained and appropriately normed (SCAN) meta-GGA. LSDA-LSIC and LSDA-LSIC+, however, fail to predict interaction energies involving weaker bonds, in sharp contrast to their earlier successes. It is found that more than one set of localized SIC orbitals can yield a nearly degenerate energetic description of the same multiple covalent bond, suggesting that a consistent chemical interpretation of the localized orbitals requires a new way to choose their Fermi orbital descriptors. To make a locally scaled down SIC to functionals beyond the LSDA requires a gauge transformation of the functional's energy density. The resulting SCAN-sdSIC, evaluated on SCAN-SIC total and localized orbital densities, leads to an acceptable description of many equilibrium properties including the dissociation energies of weak bonds.

17.
J Chem Phys ; 154(6): 061101, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33588552

RESUMO

We combine a regularized variant of the strongly constrained and appropriately normed semilocal density functional [J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)] with the latest generation semi-classical London dispersion correction. The resulting density functional approximation r2SCAN-D4 has the speed of generalized gradient approximations while approaching the accuracy of hybrid functionals for general chemical applications. We demonstrate its numerical robustness in real-life settings and benchmark molecular geometries, general main group and organo-metallic thermochemistry, and non-covalent interactions in supramolecular complexes and molecular crystals. Main group and transition metal bond lengths have errors of just 0.8%, which is competitive with hybrid functionals for main group molecules and outperforms them for transition metal complexes. The weighted mean absolute deviation (WTMAD2) on the large GMTKN55 database of chemical properties is exceptionally small at 7.5 kcal/mol. This also holds for metal organic reactions with an MAD of 3.3 kcal/mol. The versatile applicability to organic and metal-organic systems transfers to condensed systems, where lattice energies of molecular crystals are within the chemical accuracy (errors <1 kcal/mol).

18.
Proc Natl Acad Sci U S A ; 115(50): E11578-E11585, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30463943

RESUMO

The Kohn-Sham potential [Formula: see text] is the effective multiplicative operator in a noninteracting Schrödinger equation that reproduces the ground-state density of a real (interacting) system. The sizes and shapes of atoms, molecules, and solids can be defined in terms of Kohn-Sham potentials in a nonarbitrary way that accords with chemical intuition and can be implemented efficiently, permitting a natural pictorial representation for chemistry and condensed-matter physics. Let [Formula: see text] be the maximum occupied orbital energy of the noninteracting electrons. Then the equation [Formula: see text] defines the surface at which classical electrons with energy [Formula: see text] would be turned back and thus determines the surface of any electronic object. Atomic and ionic radii defined in this manner agree well with empirical estimates, show regular chemical trends, and allow one to identify the type of chemical bonding between two given atoms by comparing the actual internuclear distance to the sum of atomic radii. The molecular surfaces can be fused (for a covalent bond), seamed (ionic bond), necked (hydrogen bond), or divided (van der Waals bond). This contribution extends the pioneering work of Z.-Z. Yang et al. [Yang ZZ, Davidson ER (1997) Int J Quantum Chem 62:47-53; Zhao DX, et al. (2018) Mol Phys 116:969-977] by our consideration of the Kohn-Sham potential, protomolecules, doubly negative atomic ions, a bond-type parameter, seamed and necked molecular surfaces, and a more extensive table of atomic and ionic radii that are fully consistent with expected periodic trends.

19.
Nano Lett ; 20(4): 2806-2811, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32197043

RESUMO

Silver nanostructures with hierarchical porosities of multiple length scales have been synthesized through electrochemical reduction of silver benzenethiolate nanoboxes. The porous Ag nanostructures exhibit superior catalytic performance toward electrochemical reduction of CO2. The Faradaic efficiency of reducing CO2 to CO can be close to 100% at high cathodic potentials, benefiting from the readsorbed benzenethiolate ions on the Ag surface that can suppress the hydrogen evolution reaction (HER). Density functional theory calculations using the SCAN functional reveal that the disfavored H binding on the benzenethiolate-modified Ag surface is responsible for inhibiting the HER. The mass-specific activity of CO2 reduction can be over 500 A/g because the multiple-scale porosities maximize the diffusion of reactive species to and away from the Ag surface. The unique multiscale porosities and surface modification of the as-synthesized Ag nanostructures make them a class of promising catalysts for electrochemical reduction of CO2 in protic electrolytes to achieve maximum activity and selectivity.

20.
J Chem Phys ; 152(5): 054105, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32035475

RESUMO

The classical Kohn-Sham turning radius Rt of an atom can be defined as the radius where the Kohn-Sham potential is equal to the negative ionization potential of the atom, i.e., where vs(Rt) = ϵh. It was recently shown [E. Ospadov et al., Proc. Natl. Acad. Sci. U. S. A. 115, E11578-E11585 (2018)] to yield chemically relevant bonding distances, in line with known empirical values. In this work, we show that extension of the concept to non-integer electron number yields additional information about atomic systems and can be used to detect the difficulty of adding or subtracting electrons. Notably, it reflects the ease of bonding in open p-shells and its greater difficulty in open s-shells. The latter manifests in significant discontinuities in the turning radius as the electron number changes the principal quantum number of the outermost electronic shell (e.g., going from Na to Na2+). We then show that a non-integer picture is required to correctly interpret bonding and dissociation in H2 +. Results are consistent when properties are calculated exactly or via an appropriate approximation. They can be interpreted in the context of conceptual density functional theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA