Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(9): 4470-4478, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36821722

RESUMO

Enzyme-linked immunosorbent assay (ELISA) is a central analytic method in biological science for the detection of proteins. Introduction of droplet-based microfluidics allowed the development of miniaturized, less-consuming, and more sensitive ELISA assays by coencapsulating the biological sample and antibody-functionalized particles. We report herein an alternative in-droplet immunoassay format, which avoids the use of particles. It exploits the oil/aqueous-phase interface as a protein capture and detection surface. This is achieved using tailored perfluorinated surfactants bearing azide-functionalized PEG-based polar headgroups, which spontaneously react when meeting at the droplet formation site, with strained alkyne-functionalized antibodies solubilized in the water phase. The resulting antibody-functionalized inner surface can then be used to capture a target protein. This surface capture process leads to concomitant relocation at the surface of a labeled detection antibody and in turn to a drastic change in the shape of the fluorescence signal from a convex shape (not captured) to a characteristic concave shape (captured). This novel droplet surface immunoassay by fluorescence relocation (D-SIRe) proved to be fast and sensitive at 2.3 attomoles of analyte per droplet. It was further demonstrated to allow detection of cytosolic proteins at the single bacteria level.


Assuntos
Anticorpos , Proteínas , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática , Microfluídica/métodos
2.
Nucleic Acids Res ; 48(11): 6170-6183, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32266934

RESUMO

Translation fidelity relies essentially on the ability of ribosomes to accurately recognize triplet interactions between codons on mRNAs and anticodons of tRNAs. To determine the codon-anticodon pairs that are efficiently accepted by the eukaryotic ribosome, we took advantage of the IRES from the intergenic region (IGR) of the Cricket Paralysis Virus. It contains an essential pseudoknot PKI that structurally and functionally mimics a codon-anticodon helix. We screened the entire set of 4096 possible combinations using ultrahigh-throughput screenings combining coupled transcription/translation and droplet-based microfluidics. Only 97 combinations are efficiently accepted and accommodated for translocation and further elongation: 38 combinations involve cognate recognition with Watson-Crick pairs and 59 involve near-cognate recognition pairs with at least one mismatch. More than half of the near-cognate combinations (36/59) contain a G at the first position of the anticodon (numbered 34 of tRNA). G34-containing tRNAs decoding 4-codon boxes are almost absent from eukaryotic genomes in contrast to bacterial genomes. We reconstructed these missing tRNAs and could demonstrate that these tRNAs are toxic to cells due to their miscoding capacity in eukaryotic translation systems. We also show that the nature of the purine at position 34 is correlated with the nucleotides present at 32 and 38.


Assuntos
Códon/genética , Purinas/química , Purinas/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Pareamento Incorreto de Bases , Pareamento de Bases , Sequência de Bases , Códon/química , Códon/metabolismo , Células Eucarióticas/metabolismo , Biblioteca Gênica , Guanina/química , Guanina/metabolismo , Sítios Internos de Entrada Ribossomal/genética , Nucleotídeos/química , Nucleotídeos/metabolismo , Elongação Traducional da Cadeia Peptídica , RNA de Transferência/metabolismo , Ribossomos/metabolismo
3.
ACS Appl Mater Interfaces ; 15(38): 45498-45505, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37704020

RESUMO

Droplet-based microfluidics is leading the development of miniaturized, rapid, and sensitive version of enzyme-linked immunosorbent assays (ELISAs), a central method for protein detection. These assays involve the use of a functionalized surface able to selectively capture the desired analyte. Using the droplet's oil water interface as a capture surface requires designing custom-perfluorinated fluorosurfactants bearing azide-containing polar groups, which spontaneously react when forming the droplet with strain-alkyne-functionalized antibodies solubilized in the aqueous phase. In this article, we present our research on the influence of the structure of surfactant's hydrophilic heads on the efficiency of SPAAC functionalization and on the effect of this antibody grafting process on droplet stability. We have shown that while short linkers lead to high grafting efficiency, long linkers lead to high stability, and that an intermediate size is required to balance both parameters. In the described family of surfactants, the optimal structure proved to be a PEG4 linker connecting a polar di-azide head and a per-fluoropolyether tail (Krytox). We also found that grafting an increasing amount of antibody, thus increasing interface coverage, increases droplet stability. It thus appears that such a bi-partite system with a reactive fluoro-surfactant in the oil phase and reactive antibody counterpart in the aqueous phase gives access in situ to novel surfactant construct providing unexplored interface structures and droplet functionality.


Assuntos
Microfluídica , Água , Água/química , Azidas/química , Tensoativos/química , Anticorpos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA