Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Biol Chem ; 299(10): 105207, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660909

RESUMO

Chemotaxis is a widespread strategy used by unicellular and multicellular living organisms to maintain their fitness in stressful environments. We previously showed that bacteria can trigger a negative chemotactic response to a copper (Cu)-rich environment. Cu ion toxicity on bacterial cell physiology has been mainly linked to mismetallation events and reactive oxygen species (ROS) production, although the precise role of Cu-generated ROS remains largely debated. Here, using inductively coupled plasma optical emission spectrometry on cell fractionates, we found that the cytoplasmic Cu ion content mirrors variations of the extracellular Cu ion concentration. ROS-sensitive fluorescent probe and biosensor allowed us to show that the increase of cytoplasmic Cu ion content triggers a dose-dependent oxidative stress, which can be abrogated by superoxide dismutase and catalase overexpression. The inhibition of ROS production in the cytoplasm not only improves bacterial growth but also impedes Cu chemotaxis, indicating that ROS derived from cytoplasmic Cu ions mediate the control of bacterial chemotaxis to Cu. We also identified the Cu chemoreceptor McpR, which binds Cu ions with low affinity, suggesting a labile interaction. In addition, we demonstrate that the cysteine 75 and histidine 99 within the McpR sensor domain are key residues in Cu chemotaxis and Cu coordination. Finally, we discovered that in vitro both Cu(I) and Cu(II) ions modulate McpR conformation in a distinct manner. Overall, our study provides mechanistic insights on a redox-based control of Cu chemotaxis, indicating that the cellular redox status can play a key role in bacterial chemotaxis.

2.
Phys Chem Chem Phys ; 23(30): 16157-16164, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34297025

RESUMO

Hybrid free-standing biomimetic materials are developed by integrating the VDAC36 ß-barrel protein into robust and flexible three-layered polymer nanomembranes. The first and third layers are prepared by spin-coating a mixture of poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA). PVA nanofeatures are transformed into controlled nanoperforations by solvent-etching. The two nanoperforated PLA layers are separated by an electroactive layer, which is successfully electropolymerized by introducing a conducting sacrificial substrate under the first PLA nanosheet. Finally, the nanomaterial is consolidated by immobilizing the VDAC36 protein, active as an ion channel, into the nanoperforations of the upper layer. The integration of the protein causes a significant reduction of the material resistance, which decreases from 21.9 to 3.9 kΩ cm2. Electrochemical impedance spectroscopy studies using inorganic ions and molecular metabolites (i.e.l-lysine and ATP) not only reveal that the hybrid films behave as electrochemical supercapacitors but also indicate the most appropriate conditions to obtain selective responses against molecular ions as a function of their charge. The combination of polymers and proteins is promising for the development of new devices for engineering, biotechnological and biomedical applications.


Assuntos
Materiais Biomiméticos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Nanoestruturas/química , Poliésteres/química , Polímeros/química , Poliestirenos/química , Álcool de Polivinil/química , Canais de Ânion Dependentes de Voltagem/química , Trifosfato de Adenosina/química , Espectroscopia Dielétrica , Condutividade Elétrica , Canais Iônicos/química , Transporte de Íons , Íons/isolamento & purificação , Lisina/química , Relação Estrutura-Atividade , Propriedades de Superfície
3.
Proteins ; 88(6): 729-739, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31833115

RESUMO

As it forms water-filled channel in the mitochondria outer membrane and diffuses essential metabolites such as NADH and ATP, the voltage-dependent anion channel (VDAC) protein family plays a central role in all eukaryotic cells. In comparison with their mammalian homologues, little is known about the structural and functional properties of plant VDACs. In the present contribution, one of the two VDACs isoforms of Solanum tuberosum, stVDAC36, has been successfully overexpressed and refolded by an in-house method, as demonstrated by the information on its secondary and tertiary structure gathered from circular dichroism and intrinsic fluorescence. Cross-linking and molecular modeling studies have evidenced the presence of dimers and tetramers, and they suggest the formation of an intermolecular disulfide bond between two stVDAC36 monomers. The pore-forming activity was also assessed by liposome swelling assays, indicating a typical pore diameter between 2.0 and 2.7 nm. Finally, insights about the ATP binding inside the pore are given by docking studies and electrostatic calculations.


Assuntos
Trifosfato de Adenosina/química , Lipossomos/química , Proteínas de Plantas/química , Solanum tuberosum/metabolismo , Canais de Ânion Dependentes de Voltagem/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Clonagem Molecular , Reagentes de Ligações Cruzadas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Lipossomos/metabolismo , Modelos Moleculares , Concentração Osmolar , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Redobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solanum tuberosum/genética , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
4.
J Enzyme Inhib Med Chem ; 29(5): 654-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24102523

RESUMO

A series of lipophilic ester derivatives (2a-g) of (S)-1-(pent-4'-enoyl)-4-(hydroxymethyl)-azetidin-2-one has been synthesised in three steps from (S)-4-(benzyloxycarbonyl)-azetidin-2-one and evaluated as novel, reversible, ß-lactamic inhibitors of endocannabinoid-degrading enzymes (human fatty acid amide hydrolase (hFAAH) and monoacylglycerol lipase (hMAGL)). The compounds showed IC50 values in the micromolar range and selectivity for hFAAH versus hMAGL. The unexpected 1000-fold decrease in activity of 2a comparatively to the known regioisomeric structure 1a (i.e. lipophilic chains placed on N1 and C3 positions of the ß-lactam core) could be explained on the basis of docking studies into a revisited model of hFAAH active site, considering one or two water molecules in interaction with the catalytic triad.


Assuntos
Amidoidrolases/antagonistas & inibidores , Azetidinas/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Amidoidrolases/metabolismo , Azetidinas/síntese química , Azetidinas/química , Domínio Catalítico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Relação Estrutura-Atividade
5.
Biotechnol Bioeng ; 110(2): 417-23, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22949228

RESUMO

It has recently been reported that 2-methyl-2,4-pentanediol (MPD) can modulate the protein-binding properties of sodium dodecyl sulfate (SDS), turning it into a non-denaturing detergent. Indeed both alpha (the lysozyme) and beta (the carbonic anhydrase II) soluble enzymes, as well as a beta membrane protein (PagP) have been successfully refolded into their native form by using this amphiphatic alcohol. In order to support the universal character of our MPD-based technique, we have extended its transferability to the Omp2a trimeric membrane porin. The far-UV circular dichroism signature of Omp2a refolded with our original procedure is identical to that obtained by classical techniques, clearly indicating a proper refolding. Moreover, we show that the optimal SDS/MPD ratio for refolding Omp2a is similar to what has been observed for other types of proteins. While the protocol allows refolding at higher protein concentration (up to 4 mg/mL) and ionic strength (up to 1 M NaCl) than other refolding methods, it is also more efficient at basic pH values and medium temperature (20-40°C). Finally, the key role of the cosolvent was highlighted by a thorough study of the efficiency of MPD analogues, and a high variability was observed, as they can be able or unable to induce refolding at low or high salt concentrations.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Químicos , Porinas/química , Porinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Álcoois/química , Proteínas de Bactérias/genética , Biotecnologia/métodos , Concentração Osmolar , Porinas/genética , Conformação Proteica , Redobramento de Proteína , Proteínas Recombinantes/genética , Cloreto de Sódio/química
6.
Protein J ; 41(1): 189-200, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34845557

RESUMO

Insect trehalases are glycoside hydrolases essential for trehalose metabolism and stress resistance. We here report the extraction and purification of Acyrthosiphon pisum soluble trehalase (ApTreh-1), its biochemical and structural characterization, as well as the determination of its kinetic properties. The protein has been purified by ammonium sulphate precipitation, first followed by an anion-exchange and then by an affinity chromatography. The SDS-PAGE shows a main band at 70 kDa containing two isoforms of ApTreh-1 (X1 and X2), identified by mass spectrometry and slightly contrasting in the C-terminal region. A phylogenetic tree, a multiple sequence alignment, as well as a modelled 3D-structure were constructed and they all reveal the ApTreh-1 similarity to other insect trehalases, i.e. the two signature motifs 179PGGRFRELYYWDTY192 and 479QWDFPNAWPP489, a glycine-rich region 549GGGGEY554, and the catalytic residues Asp336 and Glu538. The optimum enzyme activity occurs at 45 °C and pH 5.0, with Km and Vmax values of ~ 71 mM and ~ 126 µmol/min/mg, respectively. The present structural and functional characterization of soluble A. pisum trehalase enters the development of new strategies to control the aphids pest without significant risk for non-target organisms and human health.


Assuntos
Afídeos , Controle de Insetos , Trealase , Animais , Afídeos/enzimologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Filogenia , Trealase/genética , Trealase/metabolismo
7.
Biochim Biophys Acta Biomembr ; 1864(12): 184038, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36057369

RESUMO

Copper cations play fundamental roles in biological systems, such as protein folding and stabilization, or enzymatic reactions. Although copper is essential to the cell, it can become cytotoxic if present in too high concentration. Organisms have therefore developed specific regulation mechanisms towards copper. This is the case of the Pco system present in the bacterium Caulobacter crescentus, which is composed of two proteins: a soluble periplasmic protein PcoA and an outer membrane protein PcoB. PcoA oxidizes Cu+ to Cu2+, whereas PcoB is thought to be an efflux pump for Cu2+. While the PcoA protein has already been studied, very little is known about the structure and function of PcoB. In the present work, PcoB has been overexpressed in high yield in E. coli strains and successfully refolded by the SDS-cosolvent method. Binding to divalent cations has also been studied using several spectroscopic techniques. In addition, a three-dimensional structure model of PcoB, experimentally supported by circular dichroism, has been constructed, showing a ß-barrel conformation with a N-terminal disordered chain. This peculiar intrinsic disorder property has also been confirmed by various bioinformatic tools.


Assuntos
Caulobacter crescentus , Proteínas Periplásmicas , Cátions/metabolismo , Cátions Bivalentes/metabolismo , Caulobacter crescentus/metabolismo , Cobre/metabolismo , Escherichia coli , Proteínas de Membrana/metabolismo , Proteínas Periplásmicas/metabolismo
8.
Int J Biol Macromol ; 218: 57-71, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863661

RESUMO

Double PHD fingers 3 (DPF3) is a zinc finger protein, found in the BAF chromatin remodelling complex, and is involved in the regulation of gene expression. Two DPF3 isoforms have been identified, respectively named DPF3b and DPF3a. Very limited structural information is available for these isoforms, and their specific functionality still remains poorly studied. In a previous work, we have demonstrated the first evidence of DPF3a being a disordered protein sensitive to amyloid fibrillation. Intrinsically disordered proteins (IDPs) lack a defined tertiary structure, existing as a dynamic conformational ensemble, allowing them to act as hubs in protein-protein interaction networks. In the present study, we have more thoroughly characterised DPF3a in vitro behaviour, as well as unravelled and compared the structural properties of the DPF3b isoform, using an array of predictors and biophysical techniques. Predictions, spectroscopy, and dynamic light scattering have revealed a high content in disorder: prevalence of random coil, aromatic residues partially to fully exposed to the solvent, and large hydrodynamic diameters. DPF3a appears to be more disordered than DPF3b, and exhibits more expanded conformations. Furthermore, we have shown that they both time-dependently aggregate into amyloid fibrils, as revealed by typical circular dichroism, deep-blue autofluorescence, and amyloid-dye binding assay fingerprints. Although spectroscopic and microscopic analyses have unveiled that they share a similar aggregation pathway, DPF3a fibrillates at a faster rate, likely through reordering of its C-terminal domain.


Assuntos
Proteínas Intrinsicamente Desordenadas , Amiloide/química , Proteínas Intrinsicamente Desordenadas/química , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco
9.
Biomacromolecules ; 12(4): 1298-304, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21361371

RESUMO

We here describe the investigation at the atomistic level of the structure, stability, and dynamics of several complexes resulting from the interaction of oxidized poly(3,4-ethylenedioxythiophene) with the well-known Dickerson's dodecamer sequence. Four specific arrangements have been selected as referential structures for molecular dynamics simulations, and the resulting independent trajectories tend to converge in two distinguishable models with the strongest interactions. The first one presents a coiled DNA strand enveloping the oligomer chain, whereas in the second model, the conducting polymer chain and the disorganized DNA strand are facing side-by-side. Analysis of the intermolecular interactions indicates that the electrostatic interactions involving the negatively charged DNA phosphates and the positively charged units of the oligomer are much more frequent in the first model. In addition, aside from these electrostatic interactions, specific O · · · H and S · · · H hydrogen bonds, π-π stacking, and N-H · · · π interactions have been detected. Among all of these four specific interactions, we show that the π-π stacking is the most abundant and shows the best stability, whereas O · · · H hydrogen bonds are also frequent with long lifetimes. At the end, we have to underline that these specific interactions are predominant for the thymine and the guanine, which is in perfect agreement with previous experimental observations.


Assuntos
DNA/química , Polímeros/química , Cátions , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Plasmídeos
10.
Phys Chem Chem Phys ; 13(32): 14584-9, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21623431

RESUMO

In DNA, base pairs are involved in two reciprocal interactions: interbase hydrogen bonds and stacking. Furthermore, base pairs also undergo the effects of the external entities present in the biological environment, such as water molecules and cations. In this contribution, the double spontaneous mutation has been studied with hybrid theoretical tools in a DNA-embedded guanine-cytosine model accounting for the impact of the first hydration shell. According to our findings, the combination of the neighboring base pairs and surrounding water molecules plays a crucial role in the double proton transfer. Indeed, as a consequence of these interactions, the double proton transfer (DPT) mechanism is altered: on the one hand, stacking and hydration strongly affect the geometry of base pairs, and, on the other hand, vicinal water molecules may play an active role in the tautomeric equilibrium by catalyzing the proton transfer reaction.


Assuntos
DNA/química , Pareamento de Bases , Citosina/química , Guanina/química , Ligação de Hidrogênio , Modelos Moleculares , Mutação , Prótons , Teoria Quântica
11.
J Phys Chem A ; 115(46): 13642-8, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-22034962

RESUMO

In the present paper we report direct experimental evidence of the existence of hydrogen bonds between poly(3,4-(ethylenedioxy)thiophene) (PEDOT) and DNA complexes and bring deeper knowledge about how such interactions can take place in such species. To this end, we used both experimental and theoretical methodologies to examine the interactions between the building blocks composing these two macromolecules. The specific interaction natures between 3,4-(ethylenedioxy)thiophene (EDOT, E) and doubly protonated guanine (GH(2)(2+)) monomers have been investigated using UV-vis spectroscopy. Quantum mechanical calculations in the density functional theory (DFT) and time-dependent density functional theory (TDDFT) frameworks have been used to identify the structures of the possible complexes. These differ in the interaction pattern, and it was possible to interpret the absorption spectra in terms of intermolecular interactions. Our results allow verification of the previous hypothesis about the formation of specific N-H···O interactions between G-containing nucleotide sequences and PEDOT. Clearly, DFT calculations indicate that E:GH(2)(2+) complexes are stabilized by N-H···O interactions, which involve an E oxygen and the -NH and -NH(2) moieties of GH(2)(2+). Furthermore, TDDFT calculations are able to reproduce the absorption spectra (both energy gaps and relative oscillator strength magnitudes) of E and GH(2)(2+), as well as the complex.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , DNA/química , Guanina/química , Polímeros/química , Modelos Moleculares , Estrutura Molecular , Teoria Quântica
12.
Acta Crystallogr B ; 67(Pt 6): 499-507, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22101539

RESUMO

Pharmaceutical compounds are mostly developed as solid dosage forms containing a single-crystal form. It means that the selection of a particular crystal state for a given molecule is an important step for further clinical outlooks. In this context, piracetam, a pharmaceutical molecule known since the sixties for its nootropic properties, is considered in the present work. This molecule is analyzed using several experimental and theoretical approaches. First, the conformational space of the molecule has been systematically explored by performing a quantum mechanics scan of the two most relevant dihedral angles of the lateral chain. The predicted stable conformations have been compared to all the reported experimental geometries retrieved from the Cambridge Structural Database (CSD) covering polymorphs and cocrystals structures. In parallel, different batches of powders have been recrystallized. Under specific conditions, single crystals of polymorph (III) of piracetam have been obtained, an outcome confirmed by crystallographic analysis.


Assuntos
Fármacos Neuroprotetores/química , Piracetam/química , Teoria Quântica , Cristalografia por Raios X , Bases de Dados Factuais , Estrutura Molecular , Difração de Pó
13.
ACS Omega ; 6(29): 18793-18801, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34337219

RESUMO

Double PHD fingers 3 (DPF3) is a human epigenetic factor found in the multiprotein BRG1-associated factor (BAF) chromatin remodeling complex. It has two isoforms: DPF3b and DPF3a, but very little is known about the latter. Despite the lack of structural data, it has been established that DPF3a is involved in various protein-protein interactions and that it is subject to phosphorylation. These features are typical of intrinsically disordered proteins (IDPs) for which the disorder is essential to their functionality. IDPs are also prone to aggregation and can assemble into cytotoxic amyloid fibrils in specific pathological contexts. In the present work, the DPF3a disordered nature and propensity to aggregation have been investigated using a combination of disorder predictors and biophysical methods. The DPF3a-predicted disordered character has been correlated to a characteristic random coil signal in far-UV circular dichroism (CD) and to a fluorescence emission band typical of Trp residues fully exposed to the solvent. After DPF3a purification and 24 h of incubation at room temperature, dynamic light scattering confirmed the presence of DPF3a aggregates whose amyloid nature have been highlighted by a specific deep-blue autofluorescence signature, as well as by an increase in thioflavin T fluorescence upon binding. These results are supported by an enrichment in twisted ß-sheets as observed in far-UV CD and a blue shift in intrinsic Trp fluorescence. Both indicate that DPF3a spontaneously tends to orderly aggregate into amyloid fibrils. The diversity of optical signatures originates from dynamical transitions between the disordered and aggregated states of the protein during the incubation. Transmission electron microscopy micrographs reveal that the DPF3a fibrillation process leads to the formation of short needle-shape filaments.

14.
Nat Commun ; 12(1): 6648, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789764

RESUMO

The U6 snRNA, the core catalytic component of the spliceosome, is extensively modified post-transcriptionally, with 2'-O-methylation being most common. However, how U6 2'-O-methylation is regulated remains largely unknown. Here we report that TFIP11, the human homolog of the yeast spliceosome disassembly factor Ntr1, localizes to nucleoli and Cajal Bodies and is essential for the 2'-O-methylation of U6. Mechanistically, we demonstrate that TFIP11 knockdown reduces the association of U6 snRNA with fibrillarin and associated snoRNAs, therefore altering U6 2'-O-methylation. We show U6 snRNA hypomethylation is associated with changes in assembly of the U4/U6.U5 tri-snRNP leading to defects in spliceosome assembly and alterations in splicing fidelity. Strikingly, this function of TFIP11 is independent of the RNA helicase DHX15, its known partner in yeast. In sum, our study demonstrates an unrecognized function for TFIP11 in U6 snRNP modification and U4/U6.U5 tri-snRNP assembly, identifying TFIP11 as a critical spliceosome assembly regulator.


Assuntos
Fatores de Processamento de RNA/metabolismo , Splicing de RNA/fisiologia , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Nucléolo Celular/metabolismo , Sobrevivência Celular , Corpos Enovelados/metabolismo , Células HeLa , Humanos , Metilação , Mitose , Proteínas Nucleares/metabolismo , Salpicos Nucleares/metabolismo , Ligação Proteica , Estabilidade Proteica , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/genética , RNA Nucleolar Pequeno/metabolismo , Spliceossomos/metabolismo
15.
Acc Chem Res ; 42(2): 326-34, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19113946

RESUMO

Since Antiquity, humans have produced and commercialized dyes. To this day, extraction of natural dyes often requires lengthy and costly procedures. In the 19th century, global markets and new industrial products drove a significant effort to synthesize artificial dyes, characterized by low production costs, huge quantities, and new optical properties (colors). Dyes that encompass classes of molecules absorbing in the UV-visible part of the electromagnetic spectrum now have a wider range of applications, including coloring (textiles, food, paintings), energy production (photovoltaic cells, OLEDs), or pharmaceuticals (diagnostics, drugs). Parallel to the growth in dye applications, researchers have increased their efforts to design and synthesize new dyes to customize absorption and emission properties. In particular, dyes containing one or more metallic centers allow for the construction of fairly sophisticated systems capable of selectively reacting to light of a given wavelength and behaving as molecular devices (photochemical molecular devices, PMDs).Theoretical tools able to predict and interpret the excited-state properties of organic and inorganic dyes allow for an efficient screening of photochemical centers. In this Account, we report recent developments defining a quantitative ab initio protocol (based on time-dependent density functional theory) for modeling dye spectral properties. In particular, we discuss the importance of several parameters, such as the methods used for electronic structure calculations, solvent effects, and statistical treatments. In addition, we illustrate the performance of such simulation tools through case studies. We also comment on current weak points of these methods and ways to improve them.


Assuntos
Corantes/química , Óptica e Fotônica , Animais , Simulação por Computador , Humanos , Estrutura Molecular , Fotoquímica , Solventes
16.
Phys Chem Chem Phys ; 12(40): 13144-52, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20838697

RESUMO

Using ab initio tools, we investigate the structural and electronic properties as well as the NMR spectra of hybrid dithienylethene-naphthopyran photochromes synthesised by Frigoli and Mehl (Angew. Chem. Int. Ed., 2005, 44, 5048). All possible closed/open structures have been considered and in each case several conformers could be characterised. Both UV/vis and NMR spectroscopic signatures have been compared to experimental references, and it was shown that the selected DFT/TD-DFT procedure is adequate not only to reproduce the measured spectral values but also to explain the observed photochromic pathways. Our work indicates that several conformers with different relative dithienylethene and naphthopyran orientations might be present experimentally.

17.
Phys Chem Chem Phys ; 12(28): 7994-8000, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20517564

RESUMO

We have investigated, with the help of time-dependent density functional theory, the UV/Vis absorption features of three diarylethenes coupled through a pi-electron rich moiety. For this star-shaped molecular architecture, the modifications of the electronic signatures induced by the ring-closure of one, two or three diarylethenes are carefully examined. The obtained theoretical results compare favorably with the available experimental data, and allow to reach conclusions helpful for the design of more efficient assemblies combining several molecular switches.

18.
J Phys Chem A ; 113(46): 13004-12, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19791756

RESUMO

A large series of photochromes of the spirooxazine family has been investigated using density functional theory and time-dependent density functional theory, aiming at designing molecules with an open-ring merocyanine form absorbing at the longest possible wavelength. A complete methodological assessment (basis set, solvent effects, functionals) has been performed, allowing the design of efficient multilinear regressions for two solvents (cyclohexane and toluene). These regressions allow the estimate of the absorption wavelength of open spirooxazine with an error limited to about 5 nm. The thermodynamic and spectral properties of several isomers have been considered, and it turned out that only TTC and CTC structures may appear experimentally. These structures present similar stabilities and absorption wavelengths. The impact of the auxochromic groups on the UV/vis spectra was assessed and novel promising substitution patterns have been unravelled. It is shown that using a strong push moiety on the same side of the molecule as the pull group may be an effective procedure for tuning the visible spectra. In particular, several spirooxazines with absorption wavelength predicted to be close to or larger than 700 nm are proposed.


Assuntos
Simulação por Computador , Modelos Químicos , Oxazinas/química , Compostos de Espiro/química , Estrutura Molecular , Fotoquímica , Teoria Quântica , Solventes/química , Espectrofotometria Ultravioleta , Estereoisomerismo , Termodinâmica , Fatores de Tempo
19.
3 Biotech ; 9(6): 242, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31168435

RESUMO

The European perch (Perca fluviatilis) is a carnivorous freshwater fish able to metabolise polyunsaturated fatty acids (PUFA) into highly unsaturated fatty acids (HUFA). This makes it a potential candidate for sustainable aquaculture development. In this study, special attention is given to the fatty-acid elongase (ELOVL) family, one of the two enzymatic systems implied in the HUFA biosynthesis. Structural information on European perch enzyme converting PUFA into HUFA is obtained by both molecular cloning and in silico characterization of an ELOVL5-like elongase from P. fluviatilis (pfELOVL). The full-length cDNA sequence consists of a 885-base pair Open Reading Frame coding for a 294-amino acid protein. Phylogenetic analysis and sequence alignment with fish elongases predict the pfELOVL clusters within the ELOVL5 sub-group. The amino-acid sequence displays the typical ELOVL features: several transmembrane α helices (TMH), an endoplasmic reticulum (ER) retention signal, and four "conserved boxes" involved in the catalytic site. In addition, the topology analysis predicts a 7-TMH structure addressed in the ER membrane. A 3D model of the protein embedded in an ER-like membrane environment is also provided using de novo modelling and molecular dynamics. From docking studies, two putative enzyme-substrate-binding modes, including H bonds and CH-π interactions, emphasize the role of specific residues in the "conserved boxes".

20.
J Biomol Struct Dyn ; 37(15): 3923-3935, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30593262

RESUMO

Brucella melitensis is a pathogenic bacterium responsible for brucellosis in mammals and humans. Its outer membrane proteins (Omp) control the diffusion of solutes through the membrane, and they consequently have a crucial role in the design of diagnostics and vaccines. Moreover, such proteins have recently revealed their potential for protein-based biomaterials. In the present contribution, the structure of the B. melitensis porin Omp2a is built using the RaptorX threading method. This is a 16-stranded ß-barrel with an α-helix on the third loop folding inside the barrel and forming the constriction zone of the channel, a typical feature of general porins such as PhoE and OmpF. The preferential diffusion of cations over anions experimentally observed in anterior studies is evidenced by the presence of distinct clusters of charges in the extracellular loops and in the inner pore. Docking studies support the previously reported hypothesis of Omp2a ability to aid maltotetraose diffusion. The monomer model is then assembled into a homotrimer, stabilized by the L2 loop involved in most of the interface interactions. The stability of the trimer is evaluated in three bilayers: pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and a mixture of 1:1 of POPC/POPE. All-atom molecular dynamics simulations demonstrate the ß-barrel-structural stability over time even though a breathing-like motion is observed. Compared to the pure bilayers, the POPC/POPE better preserves the integrity of the protein and its channel. Overall, this work demonstrates the relevancy of the Omp2a model and will help to design new therapeutic agents and bioinspired nanomaterials.


Assuntos
Proteínas de Bactérias/química , Brucella melitensis , Modelos Moleculares , Porinas/química , Conformação Proteica , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA