Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(37): 13970-13979, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37669159

RESUMO

Gold nanoparticles (AuNPs) are used as models to track and predict NP fates and effects in ecosystems. Previous work found that aquatic macrophytes and their associated biofilm primarily drove the fate of AuNPs within aquatic ecosystems and that seasonality was an important abiotic factor in the fate of AuNPs. Therefore, the present work aims to study if grazers, by feeding on these interfaces, modify the AuNP fate and if this is altered by seasonal fluctuations. Microcosms were dosed with 44.8 µg/L of AuNP weekly for 4 weeks and maintained in environmental chambers simulating Spring and Fall light and temperature conditions. We discovered that seasonal changes and the presence of grazers significantly altered the fate of Au. Higher temperatures in the warmer season increased dissolved organic carbon (DOC) content in the water column, leading to stabilization of Au in the water column. Additionally, snail grazing on biofilm growing on the Egeria densa surface led to a transfer of Au from macrophytes to the organic matter above the sediments. These results demonstrate that climate and grazers significantly impacted the fate of Au from AuNPs, highlighting the role that grazers might have in a large and biologically more complex ecosystem.


Assuntos
Ecossistema , Nanopartículas Metálicas , Ouro , Estações do Ano , Água
2.
Environ Sci Technol ; 57(21): 8085-8095, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37200151

RESUMO

Freshwater ecosystems are exposed to engineered nanoparticles (NPs) through discharge from wastewater and agricultural runoff. We conducted a 9-month mesocosm experiment to examine the combined effects of chronic NP additions on insect emergence and insect-mediated contaminant flux to riparian spiders. Two NPs (copper, gold, plus controls) were crossed by two levels of nutrients in 18 outdoor mesocosms open to natural insect and spider colonization. We collected adult insects and two riparian spider genera, Tetragnatha and Dolomedes, for 1 week on a monthly basis. We estimated a significant decrease in cumulative insect emergence of 19% and 24% after exposure to copper and gold NPs, irrespective of nutrient level. NP treatments led to elevated copper and gold tissue concentrations in adult insects, which resulted in terrestrial fluxes of metals. These metal fluxes were associated with increased gold and copper tissue concentrations for both spider genera. We also observed about 25% fewer spiders in the NP mesocosms, likely due to reduced insect emergence and/or NP toxicity. These results demonstrate the transfer of NPs from aquatic to terrestrial ecosystems via emergence of aquatic insects and predation by riparian spiders, as well as significant reductions in insect and spider abundance in response to NP additions.


Assuntos
Nanopartículas , Aranhas , Animais , Ecossistema , Cadeia Alimentar , Cobre/farmacologia , Rios , Insetos , Aranhas/fisiologia , Ouro/farmacologia
3.
Environ Sci Technol ; 54(16): 10170-10180, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32672035

RESUMO

Freshwater ecosystems are exposed to engineered nanoparticles through municipal and industrial wastewater-effluent discharges and agricultural nonpoint source runoff. Because previous work has shown that engineered nanoparticles from these sources can accumulate in freshwater algal assemblages, we hypothesized that nanoparticles may affect the biology of primary consumers by altering the processing of two critical nutrients associated with growth and survivorship, nitrogen and phosphorus. We tested this hypothesis by measuring the excretion rates of nitrogen and phosphorus of Physella acuta, a ubiquitous pulmonate snail that grazes heavily on periphyton, exposed to either copper or gold engineered nanoparticles for 6 months in an outdoor wetland mesocosm experiment. Chronic nanoparticle exposure doubled nutrient excretion when compared to the control. Gold nanoparticles increased nitrogen and phosphorus excretion rates more than copper nanoparticles, but overall, both nanoparticles led to higher consumer excretion, despite contrasting particle stability and physiochemical properties. Snails in mesocosms enriched with nitrogen and phosphorus had overall higher excretion rates than ones in ambient (no nutrients added) mesocosms. Stimulation patterns were different between nitrogen and phosphorus excretion, which could have implications for the resulting nutrient ratio in the water column. These results suggest that low concentrations of engineered nanoparticles could alter the metabolism of consumers and increase consumer-mediated nutrient recycling rates, potentially intensifying eutrophication in aquatic systems, for example, the increased persistence of algal blooms as observed in our mesocosm experiment.


Assuntos
Ecossistema , Nanopartículas Metálicas , Animais , Cobre , Ouro , Nitrogênio , Nutrientes , Fósforo
4.
Environ Sci Technol ; 54(3): 1533-1544, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31951397

RESUMO

Reliable predictions of the environmental fate and risk of engineered nanomaterials (ENMs) require a better understanding of ENM reactivity in complex, biologically active systems for chronic low-concentration exposure scenarios. Here, simulated freshwater wetland mesocosms were dosed with ENMs to assess how their reactivity and seasonal changes in environmental parameters influence ENM fate in aquatic systems. Copper-based ENMs (Kocide), known to dissolve in water, and gold nanoparticles (AuNPs), stable against dissolution in the absence of specific ligands, were added weekly to mesocosm waters for 9 months. Metal accumulation and speciation changes in the different environmental compartments were assessed over time. Copper from Kocide rapidly dissolved likely associating with organic matter in the water column, transported to terrestrial soils and deeper sediment where it became associated with organic or sulfide phases. In contrast, Au accumulated on/in the macrophytes where it oxidized and transferred over time to surficial sediment. A dynamic seasonal accumulation and metal redox cycling were found between the macrophyte and the surficial sediment for AuNPs. These results demonstrate the need for experimental quantification of how the biological and chemical complexity of the environment, combined with their seasonal variations, drive the fate of metastable ENMs.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Cobre , Água Doce , Ouro , Estações do Ano , Áreas Alagadas
5.
Ecol Appl ; 28(6): 1435-1449, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29939451

RESUMO

Despite the rapid rise in diversity and quantities of engineered nanomaterials produced, the impacts of these emerging contaminants on the structure and function of ecosystems have received little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may interact with nutrient pollution in altering ecosystem productivity, despite the recognition that eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by nutrient pollution? To address these questions, we examined the impacts of a citrate-coated gold nanoparticle (AuNPs) and of a commercial pesticide containing Cu(OH)2 nanoparticles (CuNPs) on aquatic primary producers under both ambient and enriched nutrient conditions. Wetland mesocosms were exposed repeatedly with low concentrations of nanoparticles and nutrients over the course of a 9-month experiment in an effort to replicate realistic field exposure scenarios. In the absence of nutrient enrichment, there were no persistent effects of AuNPs or CuNPs on primary producers or ecosystem productivity. However, when combined with nutrient enrichment, both NPs intensified eutrophication. When either of these NPs were added in combination with nutrients, algal blooms persisted for >50 d longer than in the nutrient-only treatment. In the AuNP treatment, this shift from clear waters to turbid waters led to large declines in both macrophyte growth and rates of ecosystem gross primary productivity (average reduction of 52% ± 6% and 92% ± 5%, respectively) during the summer. Our results suggest that nutrient status greatly influences the ecosystem-scale impact of two emerging contaminants and that synthetic chemicals may be playing an under-appreciated role in the global trends of increasing eutrophication. We provide evidence here that chronic exposure to Au and Cu(OH)2 nanoparticles at low concentrations can intensify eutrophication of wetlands and promote the occurrence of algal blooms.


Assuntos
Cobre/toxicidade , Eutrofização , Ouro/toxicidade , Hidróxidos/toxicidade , Nanopartículas/toxicidade , Áreas Alagadas , Hydrocharitaceae/crescimento & desenvolvimento , Oxigênio/metabolismo
6.
Environ Sci Technol ; 52(17): 9768-9776, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30067347

RESUMO

Trace metals associated with nanoparticles are known to possess reactivities that are different from their larger-size counterparts. However, the relative importance of small relative to large particles for the overall distribution and biouptake of these metals is not as well studied in complex environmental systems. Here, we have examined differences in the long term fate and transport of ceria (CeO2) nanoparticles of two different sizes (3.8 vs 185 nm), dosed weekly to freshwater wetland mesocosms over 9 months. While the majority of CeO2 particles were detected in soils and sediments at the end of nine months, there were significant differences observed in fate, distribution, and transport mechanisms between the two materials. Small nanoparticles were removed from the water column primarily through heteroaggregation with suspended solids and plants, while large nanoparticles were removed primarily by sedimentation. A greater fraction of small particles remained in the upper floc layers of sediment relative to the large particles (31% vs 7%). Cerium from the small particles were also significantly more bioavailable to aquatic plants (2% vs 0.5%), snails (44 vs 2.6 ng), and insects (8 vs 0.07 µg). Small CeO2 particles were also significantly reduced from Ce(IV) to Ce(III), while aquatic sediments were a sink for untransformed large nanoparticles. These results demonstrate that trace metals originating from nanoscale materials have much greater potential than their larger counterparts to distribute throughout multiple compartments of a complex aquatic ecosystem and contribute to the overall bioavailable pool of the metal for biouptake and trophic transfer.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Animais , Ecossistema , Água Doce , Áreas Alagadas
7.
Sci Total Environ ; 842: 156726, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35716742

RESUMO

Microbial communities, including endosymbionts, play diverse and critical roles in host biology and reproduction, but contaminant exposure may cause an imbalance in the microbiome composition with subsequent impacts on host health. Here, we examined whether there was a significant alteration of the microbiome community within two taxa of riparian spiders (Tetragnathidae and Araneidae) from a site with historical polychlorinated biphenyl (PCB) contamination in southern Ontario, Canada. Riparian spiders specialize in the predation of adult aquatic insects and, as such, their contaminant levels closely track those of nearby aquatic ecosystems. DNA from whole spiders from sites with either low or high PCB contamination was extracted, and spider microbiota profiled by partial 16S rRNA gene amplicon sequencing. The most prevalent shift in microbial communities we observed was a large reduction in endosymbionts in spiders at the high PCB site. The abundance of endosymbionts at the high PCB site was 63 % and 98 % lower for tetragnathids and araneids, respectively, than at the low PCB site. Overall, this has potential implications for spider reproductive success and food webs, as riparian spiders are critical gatekeepers of energy and material fluxes at the land-water interface.


Assuntos
Microbiota , Bifenilos Policlorados , Aranhas , Animais , Insetos , Ontário , Bifenilos Policlorados/análise , RNA Ribossômico 16S
8.
BMJ Open Gastroenterol ; 6(1): e000247, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899534

RESUMO

OBJECTIVE: Obesity is a risk factor for colorectal cancer (CRC), accounting for more than 14% of CRC incidence. Microbial dysbiosis and chronic inflammation are common characteristics in both obesity and CRC. Human and murine studies, together, demonstrate the significant impact of the microbiome in governing energy metabolism and CRC development; yet, little is understood about the contribution of the microbiome to development of obesity-associated CRC as compared to individuals who are not obese. DESIGN: In this study, we conducted a meta-analysis using five publicly available stool and tissue-based 16S rRNA and whole genome sequencing (WGS) data sets of CRC microbiome studies. High-resolution analysis was employed for 16S rRNA data, which allowed us to achieve species-level information to compare with WGS. RESULTS: Characterisation of the confounders between studies, 16S rRNA variable region and sequencing method did not reveal any significant effect on alpha diversity in CRC prediction. Both 16S rRNA and WGS were equally variable in their ability to predict CRC. Results from diversity analysis confirmed lower diversity in obese individuals without CRC; however, no universal differences were found in diversity between obese and non-obese individuals with CRC. When examining taxonomic differences, the probability of being classified as CRC did not change significantly in obese individuals for all taxa tested. However, random forest classification was able to distinguish CRC and non-CRC stool when body mass index was added to the model. CONCLUSION: Overall, microbial dysbiosis was not a significant factor in explaining the higher risk of colon cancer among individuals with obesity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA