Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 194(10): 1823-1843, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39032600

RESUMO

Muscle atrophy and weakness are prevalent features of cancer. Although extensive research has characterized skeletal muscle wasting in cancer cachexia, limited studies have investigated how cardiac structure and function are affected by therapy-naive cancer. Herein, orthotopic, syngeneic models of epithelial ovarian cancer and pancreatic ductal adenocarcinoma, and a patient-derived pancreatic xenograft model, were used to define the impact of malignancy on cardiac structure, function, and metabolism. Tumor-bearing mice developed cardiac atrophy and intrinsic systolic and diastolic dysfunction, with arterial hypotension and exercise intolerance. In hearts of ovarian tumor-bearing mice, fatty acid-supported mitochondrial respiration decreased, and carbohydrate-supported respiration increased-showcasing a substrate shift in cardiac metabolism that is characteristic of heart failure. Epithelial ovarian cancer decreased cytoskeletal and cardioprotective gene expression, which was paralleled by down-regulation of transcription factors that regulate cardiomyocyte size and function. Patient-derived pancreatic xenograft tumor-bearing mice show altered myosin heavy chain isoform expression-also a molecular phenotype of heart failure. Markers of autophagy and ubiquitin-proteasome system were upregulated by cancer, providing evidence of catabolic signaling that promotes cardiac wasting. Together, two cancer types were used to cross-validate evidence of the structural, functional, and metabolic cancer-induced cardiomyopathy, thus providing translational evidence that could impact future medical management strategies for improved cancer recovery in patients.


Assuntos
Cardiomiopatias , Fenótipo , Animais , Humanos , Camundongos , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/etiologia , Feminino , Atrofia/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/complicações , Caquexia/metabolismo , Caquexia/patologia , Caquexia/etiologia , Miocárdio/metabolismo , Miocárdio/patologia
2.
Am J Physiol Cell Physiol ; 327(5): C1308-C1322, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39344417

RESUMO

Mitochondrial dysfunction is a hallmark of cancer cachexia (CC). Mitochondrial reactive oxygen species (ROS) are elevated in muscle shortly after tumor onset. Targeting mitochondrial ROS may be a viable option to prevent CC. The aim of this study was to evaluate the efficacy of a mitochondria-targeted antioxidant, SkQ1, to mitigate CC in both biological sexes. Male and female Balb/c mice were injected bilaterally with colon 26 adenocarcinoma (C26) cells (total 1 × 106 cells) or PBS (equal volume control). SkQ1 was dissolved in drinking water (∼250 nmol/kg body wt/day) and administered to mice beginning 7 days following tumor induction, whereas control groups consumed normal drinking water. In vivo muscle contractility of dorsiflexors, deuterium oxide-based protein synthesis, mitochondrial respiration and mRNA content of mitochondrial, protein turnover, and calcium channel-related markers were assessed at endpoint (25 days following tumor induction). Two-way ANOVAs, followed by Tukey's post hoc test when interactions were significant (P ≤ 0.05), were performed. SkQ1 attenuated cancer-induced atrophy, promoted protein synthesis, and abated Redd1 and Atrogin induction in gastrocnemius of C26 male mice. In female mice, SkQ1 decreased muscle mass and increased catabolic signaling in the plantaris of tumor-bearing mice, as well as reduced mitochondrial oxygen consumption, regardless of tumor. However, in females, SkQ1 enhanced muscle contractility of the dorsiflexors with concurrent induction of Ryr1, Serca1, and Serca2a in TA. In conclusion, the mitochondria-targeted antioxidant SkQ1 may attenuate CC-induced muscle loss in males, while improving muscle contractile function in tumor-bearing female mice, suggesting sexual dimorphism in the effects of this mitochondrial therapy in CC.NEW & NOTEWORTHY Herein, we assess the efficacy of the mitochondria-targeted antioxidant SkQ1 to mitigate cancer cachexia (CC) in both biological sexes. We demonstrate that SkQ1 administration attenuates muscle wasting induced by C26 tumors in male, but not female, mice. Conversely, we identify that in females, SkQ1 improves muscle contractility. These phenotypic adaptations to SkQ1 are aligned with respective responses in muscle protein synthesis, mitochondrial respiration, and mRNA content of protein turnover, as well as mitochondrial and calcium handling-related markers.


Assuntos
Antioxidantes , Caquexia , Camundongos Endogâmicos BALB C , Contração Muscular , Músculo Esquelético , Atrofia Muscular , Plastoquinona , Animais , Feminino , Masculino , Contração Muscular/efeitos dos fármacos , Caquexia/metabolismo , Caquexia/etiologia , Caquexia/fisiopatologia , Caquexia/prevenção & controle , Caquexia/tratamento farmacológico , Antioxidantes/farmacologia , Camundongos , Atrofia Muscular/metabolismo , Atrofia Muscular/prevenção & controle , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Atrofia Muscular/etiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Linhagem Celular Tumoral , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia
3.
Am J Physiol Cell Physiol ; 326(4): C1011-C1026, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145301

RESUMO

Fibrosis is associated with respiratory and limb muscle atrophy in Duchenne muscular dystrophy (DMD). Current standard of care partially delays the progression of this myopathy but there remains an unmet need to develop additional therapies. Adiponectin receptor agonism has emerged as a possible therapeutic target to lower inflammation and improve metabolism in mdx mouse models of DMD but the degree to which fibrosis and atrophy are prevented remain unknown. Here, we demonstrate that the recently developed slow-release peptidomimetic adiponectin analog, ALY688-SR, remodels the diaphragm of murine model of DMD on DBA background (D2.mdx) mice treated from days 7-28 of age during early stages of disease. ALY688-SR also lowered interleukin-6 (IL-6) mRNA but increased IL-6 and transforming growth factor-ß1 (TGF-ß1) protein contents in diaphragm, suggesting dynamic inflammatory remodeling. ALY688-SR alleviated mitochondrial redox stress by decreasing complex I-stimulated H2O2 emission. Treatment also attenuated fibrosis, fiber type-specific atrophy, and in vitro diaphragm force production in diaphragm suggesting a complex relationship between adiponectin receptor activity, muscle remodeling, and force-generating properties during the very early stages of disease progression in murine model of DMD on DBA background (D2.mdx) mice. In tibialis anterior, the modest fibrosis at this young age was not altered by treatment, and atrophy was not apparent at this young age. These results demonstrate that short-term treatment of ALY688-SR in young D2.mdx mice partially prevents fibrosis and fiber type-specific atrophy and lowers force production in the more disease-apparent diaphragm in relation to lower mitochondrial redox stress and heterogeneous responses in certain inflammatory markers. These diverse muscle responses to adiponectin receptor agonism in early stages of DMD serve as a foundation for further mechanistic investigations.NEW & NOTEWORTHY There are limited therapies for the treatment of Duchenne muscular dystrophy. As fibrosis involves an accumulation of collagen that replaces muscle fibers, antifibrotics may help preserve muscle function. We report that the novel adiponectin receptor agonist ALY688-SR prevents fibrosis in the diaphragm of D2.mdx mice with short-term treatment early in disease progression. These responses were related to altered inflammation and mitochondrial functions and serve as a foundation for the development of this class of therapy.


Assuntos
Distrofia Muscular de Duchenne , Animais , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Adiponectina/genética , Modelos Animais de Doenças , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Peróxido de Hidrogênio/metabolismo , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Camundongos Endogâmicos DBA , Músculo Esquelético/metabolismo , Diafragma/metabolismo , Fibrose , Inflamação/metabolismo , Progressão da Doença , Atrofia/metabolismo , Atrofia/patologia
4.
Biochem Cell Biol ; 102(5): 373-384, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38843556

RESUMO

Altered mitochondrial structure and function are implicated in the functional decline of skeletal muscle. Numerous cytoskeletal proteins are known to affect mitochondrial homeostasis, but this complex network is still being unraveled. Here, we investigated mitochondrial alterations in mice lacking the cytoskeletal adapter protein, XIN (XIN-/-). XIN-/- and wild-type littermate male and female mice were fed a chow or high-fat diet (HFD; 60% kcal fat) for 8 weeks before analyses of their skeletal muscles were conducted. Immuno-electron microscopy (EM) and immunofluorescence staining revealed XIN in the mitochondria and peri-mitochondrial areas, as well as the myoplasm. Intermyofibrillar mitochondria in chow-fed XIN-/- mice were notably different from wild-type (large, and/or swollen in appearance). Succinate dehydrogenase and Cytochrome Oxidase IV staining indicated greater evidence of mitochondrial enzyme activity in XIN-/- mice. No difference in body mass gains or glucose handling was observed between cohorts with HFD. However, EM revealed significantly greater mitochondrial density with evident structural abnormalities (swelling, reduced cristae density) in XIN-/- mice. Absolute Complex I and II-supported respiration was not different between groups, but relative to mitochondrial density, was significantly lower in XIN-/-. These results provide the first evidence for a role of XIN in maintaining mitochondrial morphology and function.


Assuntos
Camundongos Knockout , Mitocôndrias Musculares , Músculo Esquelético , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Masculino , Feminino , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/ultraestrutura , Dieta Hiperlipídica/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Camundongos Endogâmicos C57BL , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Ciclo Celular
5.
Am J Physiol Cell Physiol ; 324(5): C1141-C1157, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689672

RESUMO

Duchenne muscular dystrophy (DMD) is associated with distinct mitochondrial stress responses. Here, we aimed to determine whether the prospective mitochondrial-enhancing compound Olesoxime, prevents early-stage mitochondrial stress in limb and respiratory muscle from D2.mdx mice using a proof-of-concept short-term regimen spanning 10-28 days of age. As mitochondrial-cytoplasmic energy transfer occurs via ATP- or phosphocreatine-dependent phosphate shuttling, we assessed bioenergetics with or without creatine in vitro. We observed that disruptions in Complex I-supported respiration and mH2O2 emission in D2.mdx quadriceps and diaphragm were amplified by creatine demonstrating mitochondrial creatine insensitivity manifests ubiquitously and early in this model. Olesoxime selectively rescued or maintained creatine sensitivity in both muscles, independent of the abundance of respiration-related mitochondrial proteins or mitochondrial creatine kinase cysteine oxidation in quadriceps. Mitochondrial calcium retention capacity and glutathione were altered in a muscle-specific manner in D2.mdx but were generally unchanged by Olesoxime. Treatment reduced serum creatine kinase (muscle damage) and preserved cage hang-time, microCT-based volumes of lean compartments including whole body, hindlimb and bone, recovery of diaphragm force after fatigue, and cross-sectional area of diaphragm type IIX fiber, but reduced type I fibers in quadriceps. Grip strength, voluntary wheel-running and fibrosis were unaltered by Olesoxime. In summary, locomotor and respiratory muscle mitochondrial creatine sensitivities are lost during early stages in D2.mdx mice but are preserved by short-term treatment with Olesoxime in association with specific indices of muscle quality suggesting early myopathy in this model is at least partially attributed to mitochondrial stress.


Assuntos
Distrofia Muscular de Duchenne , Animais , Camundongos , Distrofia Muscular de Duchenne/metabolismo , Camundongos Endogâmicos mdx , Creatina/metabolismo , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Diafragma/metabolismo , Músculo Esquelético , Modelos Animais de Doenças
6.
Exp Physiol ; 108(9): 1108-1117, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37415288

RESUMO

NEW FINDINGS: What is the central question of this study? Can adiponectin receptor agonism improve recognition memory in a mouse model of Duchenne muscular dystrophy? What is the main finding and its importance? Short-term treatment with the new adiponectin receptor agonist ALY688 improves recognition memory in D2.mdx mice. This finding suggests that further investigation into adiponectin receptor agonism is warranted, given that there remains an unmet need for clinical approaches to treat this cognitive dysfunction in people with Duchenne muscular dystrophy. ABSTRACT: Memory impairments have been well documented in people with Duchenne muscular dystrophy (DMD). However, the underlying mechanisms are poorly understood, and there is an unmet need to develop new therapies to treat this condition. Using a novel object recognition test, we show that recognition memory impairments in D2.mdx mice are completely prevented by daily treatment with the new adiponectin receptor agonist ALY688 from day 7 to 28 of age. In comparison to age-matched wild-type mice, untreated D2.mdx mice demonstrated lower hippocampal mitochondrial respiration (carbohydrate substrate), greater serum interleukin-6 cytokine content and greater hippocampal total tau and Raptor protein contents. Each of these measures was partly or fully preserved after treatment with ALY688. Collectively, these results indicate that adiponectin receptor agonism improves recognition memory in young D2.mdx mice.


Assuntos
Distrofia Muscular de Duchenne , Animais , Camundongos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Camundongos Endogâmicos mdx , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/uso terapêutico , Adiponectina/metabolismo , Respiração , Modelos Animais de Doenças , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Músculo Esquelético/metabolismo
7.
Am J Physiol Cell Physiol ; 323(3): C718-C730, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816642

RESUMO

Mitochondrial stress may be a secondary contributor to muscle weakness in inherited muscular dystrophies. Duchenne muscular dystrophy has received the majority of attention, whereby most discoveries suggest mitochondrial ATP synthesis may be reduced. However, not all studies support this finding. Furthermore, some studies have reported increased mitochondrial reactive oxygen species and propensity for permeability transition pore formation as an inducer of apoptosis, although divergent findings have also been described. A closer examination of the literature suggests the degree and direction of mitochondrial stress responses may depend on the progression of the disease, the muscle type examined, the mouse model used with regard to preclinical research, the precise metabolic pathways in consideration, and in some cases, the in vitro technique used to assess a given mitochondrial bioenergetic function. One intent of this review is to provide careful considerations for future experimental designs to resolve the heterogeneous nature of mitochondrial stress during the progression of Duchenne muscular dystrophy. Such considerations have implications for other muscular dystrophies as well which are addressed briefly herein. A renewed perspective of the term "mitochondrial dysfunction" is presented whereby stress responses might be re-explored in future investigations as direct contributors to myopathy versus an adaptive "reprogramming" intended to maintain homeostasis in the face of disease stressors themselves. In so doing, the prospective development of mitochondrial enhancement therapies can be driven by advances in perspectives as much as experimental approaches when resolving the precise relationships between mitochondrial remodeling and muscle weakness in Duchenne and, indeed, other muscular dystrophies.


Assuntos
Distrofia Muscular de Duchenne , Animais , Camundongos , Mitocôndrias/metabolismo , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Estudos Prospectivos
8.
J Physiol ; 600(24): 5215-5245, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36326014

RESUMO

Compared to age-matched men, pre-menopausal women show greater resilience against cardiovascular disease (CVD), hepatic steatosis, diabetes and obesity - findings that are widely attributed to oestrogen. However, meta-analysis data suggest that current use of oral combined contraceptives (OC) is a risk factor for myocardial infarction, and OC use further compounds with metabolic disease risk factors to increase CVD susceptibility. While mitochondrial function in tissues such as the liver and skeletal muscle is an emerging mechanism by which oestrogen may confer its protection, effects of OC use on mitochondria and metabolism in the context of disease risk remain unexplored. To answer this question, female C57Bl/6J mice were fed a high fat diet and treated with vehicle or OCs for 3, 12 or 20 weeks (n = 6 to 12 per group) at a dose and ratio that mimic the human condition of cycle cessation in the low oestrogen, high progesterone stage. Liver and skeletal muscle mitochondrial function (respiratory capacity, H2 O2 , coupling) was measured along with clinical outcomes of cardiometabolic disease such as obesity, glucose tolerance, hepatic steatosis and aortic atherosclerosis. The main findings indicate that regardless of treatment duration, OCs robustly increase hepatic mitochondrial H2 O2 levels, likely due to diminished antioxidant capacity, but have no impact on muscle mitochondrial H2 O2 . Furthermore, OC-treated mice had lower adiposity and hepatic triglyceride content compared to control mice despite reduced wheel running, spontaneous physical activity and total energy expenditure. Together, these studies describe tissue-specific effects of OC use on mitochondria as well as variable impacts on markers of metabolic disease susceptibility. KEY POINTS: Oestrogen loss in women increases risk for cardiometabolic diseases, a link that has been partially attributed to negative impacts on mitochondria and energy metabolism. To study the effect of oral combined contraceptives (OCs) on hepatic and skeletal muscle mitochondria and whole-body energy metabolism, we used an animal model of OCs which mimics the human condition of cessation of hormonal cycling in the low oestrogen, high progesterone state. OC-treated mice have increased hepatic mitochondrial oxidative stress and decreased physical activity and energy expenditure, despite displaying lower adiposity and liver fat at this time point. These pre-clinical data reveal tissue-specific effects of OCs that likely underlie the clinical findings of increased cardiometabolic disease in women who use OCs compared to non-users, when matched for obesity.


Assuntos
Anticoncepcionais Orais , Infarto do Miocárdio , Feminino , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio , Progesterona , Atividade Motora , Fígado , Estrogênios/farmacologia , Mitocôndrias , Obesidade
9.
FASEB J ; 35(1): e21218, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337559

RESUMO

Growth differentiating factor-15 (GDF15) is an emerging target for the treatment of obesity and metabolic disease partly due to its ability to suppress food intake. GDF15 expression and secretion are thought to be regulated by a cellular integrated stress response, which involves endoplasmic reticulum (ER) stress. AMPK is another cellular stress sensor, but the relationship between AMPK, ER stress, and GDF15 has not been assessed in vivo. Wildtype (WT), AMPK ß1 deficient (AMPKß1-/- ), and CHOP-/- mice were treated with three distinct AMPK activators; AICAR, which is converted to ZMP mimicking the effects of AMP on the AMPKγ isoform, R419, which indirectly activates AMPK through inhibition of mitochondrial respiration, or A769662, a direct AMPK activator which binds the AMPKß1 isoform ADaM site causing allosteric activation. Following treatments, liver Gdf15, markers of ER-stress, AMPK activity, adenine nucleotides, circulating GDF15, and food intake were assessed. AICAR and R419 caused ER and energetic stress, increased GDF15 expression and secretion, and suppressed food intake. Direct activation of AMPK ß1 containing complexes by A769662 increased hepatic Gdf15 expression, circulating GDF15, and suppressed food intake, independent of ER stress. The effects of AICAR, R419, and A769662 on GDF15 were attenuated in AMPKß1-/- mice. AICAR and A769662 increased GDF15 to a similar extent in WT and CHOP-/- mice. Herein, we provide evidence that AMPK plays a role in mediating the induction of GDF15 under conditions of energetic stress in mouse liver in vivo.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Estresse do Retículo Endoplasmático , Fator 15 de Diferenciação de Crescimento/metabolismo , Fígado/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Fator 15 de Diferenciação de Crescimento/genética , Camundongos , Camundongos Knockout , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
10.
Am J Physiol Cell Physiol ; 321(1): C94-C103, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33979211

RESUMO

Cellular senescence is the irreversible arrest of normally dividing cells and is driven by cell cycle inhibitory proteins such as p16, p21, and p53. When cells enter senescence, they secrete a host of proinflammatory factors known as the senescence-associated secretory phenotype, which has deleterious effects on surrounding cells and tissues. Little is known of the role of senescence in Duchenne muscular dystrophy (DMD), the fatal X-linked neuromuscular disorder typified by chronic inflammation, extracellular matrix remodeling, and a progressive loss in muscle mass and function. Here, we demonstrate using C57-mdx (8-wk-old) and D2-mdx (4-wk-old and 8-wk-old) mice, two mouse models of DMD, that cells displaying canonical markers of senescence are found within the skeletal muscle. Eight-week-old D2-mdx mice, which display severe muscle pathology, had greater numbers of senescent cells associated with areas of inflammation, which were mostly Cdkn1a-positive macrophages, whereas in C57-mdx muscle, senescent populations were endothelial cells and macrophages localized to newly regenerated myofibers. Interestingly, this pattern was similar to cardiotoxin (CTX)-injured wild-type (WT) muscle, which experienced a transient senescent response. Dystrophic muscle demonstrated significant upregulations in senescence pathway genes [Cdkn1a (p21), Cdkn2a (p16INK4A), and Trp53 (p53)], which correlated with the quantity of senescence-associated ß-galactosidase (SA-ß-Gal)-positive cells. These results highlight an underexplored role for cellular senescence in murine dystrophic muscle.


Assuntos
Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Células Endoteliais/metabolismo , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Distrofina/deficiência , Distrofina/genética , Células Endoteliais/patologia , Regulação da Expressão Gênica , Humanos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Miofibrilas/metabolismo , Miofibrilas/patologia , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
11.
Diabetologia ; 64(11): 2517-2533, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34392397

RESUMO

AIMS/HYPOTHESIS: This study interrogated mitochondrial respiratory function and content in skeletal muscle biopsies of healthy adults between 30 and 72 years old with and without uncomplicated type 1 diabetes. METHODS: Participants (12 women/nine men) with type 1 diabetes (48 ± 11 years of age), without overt complications, were matched for age, sex, BMI and level of physical activity to participants without diabetes (control participants) (49 ± 12 years of age). Participants underwent a Bergström biopsy of the vastus lateralis to assess mitochondrial respiratory function using high-resolution respirometry and citrate synthase activity. Electron microscopy was used to quantify mitochondrial content and cristae (pixel) density. RESULTS: Mean mitochondrial area density was 27% lower (p = 0.006) in participants with type 1 diabetes compared with control participants. This was largely due to smaller mitochondrial fragments in women with type 1 diabetes (-18%, p = 0.057), as opposed to a decrease in the total number of mitochondrial fragments in men with diabetes (-28%, p = 0.130). Mitochondrial respiratory measures, whether estimated per milligram of tissue (i.e. mass-specific) or normalised to area density (i.e. intrinsic mitochondrial function), differed between cohorts, and demonstrated sexual dimorphism. Mass-specific mitochondrial oxidative phosphorylation (OXPHOS) capacity with the substrates for complex I and complex II (CI + II) was significantly lower (-24%, p = 0.033) in women with type 1 diabetes compared with control participants, whereas mass-specific OXPHOS capacities with substrates for complex I only (pyruvate [CI pyr] or glutamate [CI glu]) or complex II only (succinate [CII succ]) were not different (p > 0.404). No statistical differences (p > 0.397) were found in mass-specific OXPHOS capacity in men with type 1 diabetes compared with control participants despite a 42% non-significant increase in CI glu OXPHOS capacity (p = 0.218). In contrast, intrinsic CI + II OXPHOS capacity was not different in women with type 1 diabetes (+5%, p = 0.378), whereas in men with type 1 diabetes it was 25% higher (p = 0.163) compared with control participants. Men with type 1 diabetes also demonstrated higher intrinsic OXPHOS capacity for CI pyr (+50%, p = 0.159), CI glu (+88%, p = 0.033) and CII succ (+28%, p = 0.123), as well as higher intrinsic respiratory rates with low (more physiological) concentrations of either ADP, pyruvate, glutamate or succinate (p < 0.012). Women with type 1 diabetes had higher (p < 0.003) intrinsic respiratory rates with low concentrations of succinate only. Calculated aerobic fitness (Physical Working Capacity Test [PWC130]) showed a strong relationship with mitochondrial respiratory function and content in the type 1 diabetes cohort. CONCLUSIONS/INTERPRETATION: In middle- to older-aged adults with uncomplicated type 1 diabetes, we conclude that skeletal muscle mitochondria differentially adapt to type 1 diabetes and demonstrate sexual dimorphism. Importantly, these cellular alterations were significantly associated with our metric of aerobic fitness (PWC130) and preceded notable impairments in skeletal mass and strength.


Assuntos
Respiração Celular/fisiologia , Diabetes Mellitus Tipo 1/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Adulto , Idoso , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia , Mecânica Respiratória
12.
Proc Natl Acad Sci U S A ; 115(7): 1576-1581, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29378951

RESUMO

Lipocalin-2 (Lcn2), a critical component of the innate immune response which binds siderophores and limits bacterial iron acquisition, can elicit spillover adverse proinflammatory effects. Here we show that holo-Lcn2 (Lcn2-siderophore-iron, 1:3:1) increases mitochondrial reactive oxygen species (ROS) generation and attenuates mitochondrial oxidative phosphorylation in adult rat primary cardiomyocytes in a manner blocked by N-acetyl-cysteine or the mitochondria-specific antioxidant SkQ1. We further demonstrate using siderophores 2,3-DHBA (2,3-dihydroxybenzoic acid) and 2,5-DHBA that increased ROS and reduction in oxidative phosphorylation are direct effects of the siderophore component of holo-Lcn2 and not due to apo-Lcn2 alone. Extracellular apo-Lcn2 enhanced the potency of 2,3-DHBA and 2,5-DHBA to increase ROS production and decrease mitochondrial respiratory capacity, whereas intracellular apo-Lcn2 attenuated these effects. These actions of holo-Lcn2 required an intact plasma membrane and were decreased by inhibition of endocytosis. The hearts, but not serum, of Lcn2 knockout (LKO) mice contained lower levels of 2,5-DHBA compared with wild-type hearts. Furthermore, LKO mice were protected from ischemia/reperfusion-induced cardiac mitochondrial dysfunction. Our study identifies the siderophore moiety of holo-Lcn2 as a regulator of cardiomyocyte mitochondrial bioenergetics.


Assuntos
Lipocalina-2/fisiologia , Mitocôndrias/patologia , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Sideróforos/metabolismo , Animais , Gentisatos/farmacologia , Hidroxibenzoatos/farmacologia , Ferro/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
14.
J Physiol ; 598(7): 1377-1392, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30674086

RESUMO

KEY POINTS: Ninety-eight per cent of patients with Duchenne muscular dystrophy (DMD) develop cardiomyopathy, with 40% developing heart failure. While increased propensity for mitochondrial induction of cell death has been observed in left ventricle, it remains unknown whether this is linked to impaired mitochondrial respiratory control and elevated H2 O2 emission prior to the onset of cardiomyopathy. Classic mouse models of DMD demonstrate hyper-regeneration in skeletal muscle which may mask mitochondrial abnormalities. Using a model with less regenerative capacity that is more akin to DMD patients, we observed elevated left ventricular mitochondrial H2 O2 and impaired oxidative phosphorylation in the absence of cardiac remodelling or overt cardiac dysfunction at 4 weeks. These impairments were associated with dysfunctions at complex I, governance by ADP and creatine-dependent phosphate shuttling, which results in a less efficient response to energy demands. Mitochondria may be a therapeutic target for the treatment of cardiomyopathy in DMD. ABSTRACT: In Duchenne muscular dystrophy (DMD), mitochondrial dysfunction is predicted as a response to numerous cellular stressors, yet the contribution of mitochondria to the onset of cardiomyopathy remains unknown. To resolve this uncertainty, we designed in vitro assessments of mitochondrial bioenergetics to model mitochondrial control parameters that influence cardiac function. Both left ventricular mitochondrial responsiveness to the central bioenergetic controller ADP and the ability of creatine to facilitate mitochondrial-cytoplasmic phosphate shuttling were assessed. These measurements were performed in D2.B10-DMDmdx /2J mice - a model that demonstrates skeletal muscle atrophy and weakness due to limited regenerative capacities and cardiomyopathy more akin to people with DMD than classic models. At 4 weeks of age, there was no evidence of cardiac remodelling or cardiac dysfunction despite impairments in ADP-stimulated respiration and ADP attenuation of H2 O2 emission. These impairments were seen at both submaximal and maximal ADP concentrations despite no reductions in mitochondrial content markers. The ability of creatine to enhance ADP's control of mitochondrial bioenergetics was also impaired, suggesting an impairment in mitochondrial creatine kinase-dependent phosphate shuttling. Susceptibly to permeability transition pore opening and the subsequent activation of cell death pathways remained unchanged. Mitochondrial H2 O2 emission was elevated despite no change in markers of irreversible oxidative damage, suggesting alternative redox signalling mechanisms should be explored. These findings demonstrate that selective mitochondrial dysfunction precedes the onset of overt cardiomyopathy in D2.mdx mice, suggesting that improving mitochondrial bioenergetics by restoring ADP, creatine-dependent phosphate shuttling and complex I should be considered for treating DMD patients.


Assuntos
Cardiopatias , Distrofia Muscular de Duchenne , Animais , Metabolismo Energético , Cardiopatias/metabolismo , Ventrículos do Coração , Humanos , Camundongos , Camundongos Endogâmicos mdx , Mitocôndrias/metabolismo , Distrofia Muscular de Duchenne/metabolismo
15.
Am J Physiol Endocrinol Metab ; 318(1): E44-E51, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794260

RESUMO

Sexual dimorphism in mitochondrial respiratory function has been reported in young women and men without diabetes, which may have important implications for exercise. The purpose of this study was to determine if sexual dimorphism exists in skeletal muscle mitochondrial bioenergetics in people with type 1 diabetes (T1D). A resting muscle microbiopsy was obtained from women and men with T1D (n = 10/8, respectively) and without T1D (control; n = 8/7, respectively). High-resolution respirometry and spectrofluorometry were used to measure mitochondrial respiratory function, hydrogen peroxide (mH2O2) emission and calcium retention capacity (mCRC) in permeabilized myofiber bundles. The impact of T1D on mitochondrial bioenergetics between sexes was interrogated by comparing the change between women and men with T1D relative to the average values of their respective sex-matched controls (i.e., delta). These aforementioned analyses revealed that men with T1D have increased skeletal muscle mitochondrial complex I sensitivity but reduced complex II sensitivity and capacity in comparison to women with T1D. mH2O2 emission was lower in women compared with men with T1D at the level of complex I (succinate driven), whereas mCRC and mitochondrial protein content remained similar between sexes. In conclusion, women and men with T1D exhibit differential responses in skeletal muscle mitochondrial bioenergetics. Although larger cohort studies are certainly required, these early findings nonetheless highlight the importance of considering sex as a variable in the care and treatment of people with T1D (e.g., benefits of different exercise prescriptions).


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Adulto , Cálcio/metabolismo , Estudos de Casos e Controles , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Caracteres Sexuais , Fatores Sexuais , Adulto Jovem
16.
Exp Physiol ; 105(4): 565-570, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31826331

RESUMO

NEW FINDING: What is the topic of this review? Evidence of impaired mitochondrial functions and/or morphology in people with type 1 diabetes across various organ systems. What advances does it highlight? Impairments to mitochondrial functions and morphology may be a primary mechanism underlying the pathophysiology of various complications in people with type 1 diabetes. ABSTRACT: We recently made the observation that there are significant alterations to the ultrastructure and functions of mitochondria in skeletal muscle of people with type 1 diabetes (T1D). These alterations are proposed to lead to decreased energy production in skeletal muscle during exercise and thus may contribute to the impaired aerobic exercise capacity reported in some people with T1D. This Symposium Review summarizes the evidence that similar alterations also occur in the mitochondria present in organ systems outside skeletal muscle in people with T1D, and that this may contribute to the development and progression of the known complications of T1D, which eventually lead to the reported premature mortality.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Exercício Físico/fisiologia , Humanos
17.
Eur J Appl Physiol ; 120(1): 149-160, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31707475

RESUMO

PURPOSE: To examine the relationship between changes in nuclear factor erythroid 2-related factor 2 (Nrf2) expression and markers of mitochondrial biogenesis in acutely and chronically exercised human skeletal muscle. METHODS: The impact of acute submaximal endurance (END) and supramaximal interval (Tabata) cycling on the upregulation of Nrf2 (and its downstream targets), nuclear respiratory factor-1 (NRF-1) and mitochondrial transcription factor A (TFAM) mRNA expression was examined in healthy young males (n = 10). The relationship between changes in citrate synthase (CS) maximal activity and the protein content of Nrf2, heme oxygenase 1 (HO-1), NRF-1, and TFAM was also investigated following 4 weeks of Tabata in a separate group of males (n = 21). RESULTS: Nrf2, NRF-1, and HO-1 mRNA expression increased after acute exercise (p < 0.05), whereas the increase in superoxide dismutase 2 (SOD2) mRNA expression approached significance (p = 0.08). Four weeks of Tabata increased CS activity and Nrf2, NRF-1, and TFAM protein content (p < 0.05), but decreased HO-1 protein content (p < 0.05). Training-induced changes in Nrf2 protein were strongly correlated with NRF-1 (r = 0.63, p < 0.01). When comparing protein content changes between individuals with the largest (HI: + 23%) and smallest (LO: - 1%) observed changes in CS activity (n = 8 each), increases in Nrf2 and TFAM protein content were apparent in the HI group only (p < 0.02) with medium-to-large effect sizes for between-group differences in changes in Nrf2 (ηp2=0.15) and TFAM (ηp2 = 0.12) protein content. CONCLUSION: Altogether, our findings support a potential role for Nrf2 in exercise-induced mitochondrial biogenesis in human skeletal muscle.


Assuntos
Músculo Esquelético/metabolismo , Fator 2 Relacionado a NF-E2/genética , Biogênese de Organelas , Condicionamento Físico Humano/métodos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Masculino , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto Jovem
18.
J Mol Cell Cardiol ; 132: 60-70, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31051182

RESUMO

Phosphodiesterase type 3 (PDE3) inhibitors block the cAMP hydrolyzing activity of both PDE3 isoforms, PDE3A and PDE3B, which have distinct roles in the heart. Although PDE3 inhibitors improve cardiac function in heart disease patients, they also increase mortality. Nevertheless, PDE3 inhibitors can provide benefit to non-ischemic heart disease patients and are used extensively to treat heart failure in dogs. Since the isoform-dependence of the complex cardiac actions of PDE3 inhibition in diseased hearts remains unknown, we assessed the effects of PDE3 inhibitors as well as gene ablation of PDE3A or PDEB in mice following the induction of non-ischemic heart disease by pressure-overload with transverse-aortic constriction (TAC). As expected, after 6 weeks of TAC, mice exhibited left ventricular contractile dysfunction, dilation, hypertrophy and interstitial fibrosis, in association with increased macrophage numbers, activation of p38 MAPK and elevated PDE3 activity. Chronic PDE3 inhibition with milrinone (MIL), at doses that did not affect either cardiac contractility or arterial blood pressure, profoundly attenuated the adverse ventricular remodeling, reduced macrophage number and diminished p38-MAPK activation induced by TAC. Surprisingly, whole-body ablation of PDE3A, but not PDE3B, provided similar protection against TAC-induced adverse ventricular remodeling, and the addition of MIL to mice lacking PDE3A provided no further protection. Our results support the conclusion that PDE3A plays an important role in adverse cardiac remodeling induced by chronic pressure overload in mice, although the underlying biochemical mechanisms remain to be fully elucidated. The implications of this conclusion on the clinical use of PDE3 inhibitors are discussed.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/fisiologia , Cardiopatias/patologia , Estresse Mecânico , Remodelação Ventricular , Animais , Cardiopatias/etiologia , Cardiopatias/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Am J Physiol Cell Physiol ; 316(3): C449-C455, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624982

RESUMO

Microtubule-targeting chemotherapies are linked to impaired cellular metabolism, which may contribute to skeletal muscle dysfunction. However, the mechanisms by which metabolic homeostasis is perturbed remains unknown. Tubulin, the fundamental unit of microtubules, has been implicated in the regulation of mitochondrial-cytosolic ADP/ATP exchange through its interaction with the outer membrane voltage-dependent anion channel (VDAC). Based on this model, we predicted that disrupting microtubule architecture with the stabilizer paclitaxel and destabilizer vinblastine would impair skeletal muscle mitochondrial bioenergetics. Here, we provide in vitro evidence of a direct interaction between both α-tubulin and ßII-tubulin with VDAC2 in untreated single extensor digitorum longus (EDL) fibers. Paclitaxel increased both α- and ßII-tubulin-VDAC2 interactions, whereas vinblastine had no effect. Utilizing a permeabilized muscle fiber bundle preparation that retains the cytoskeleton, paclitaxel treatment impaired the ability of ADP to attenuate H2O2 emission, resulting in greater H2O2 emission kinetics. Despite no effect on tubulin-VDAC2 binding, vinblastine still altered mitochondrial bioenergetics through a surprising increase in ADP-stimulated respiration while also impairing ADP suppression of H2O2 and increasing mitochondrial susceptibility to calcium-induced formation of the proapoptotic permeability transition pore. Collectively, these results demonstrate that altering microtubule architecture with chemotherapeutics disrupts mitochondrial bioenergetics in EDL skeletal muscle. Specifically, microtubule stabilization increases H2O2 emission by impairing ADP sensitivity in association with greater tubulin-VDAC binding. In contrast, decreasing microtubule abundance triggers a broad impairment of ADP's governance of respiration and H2O2 emission as well as calcium retention capacity, albeit through an unknown mechanism.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Paclitaxel/farmacologia , Vimblastina/farmacologia , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Animais , Respiração Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Feminino , Peróxido de Hidrogênio/farmacologia , Cinética , Masculino , Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Permeabilidade/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , Tubulina (Proteína)/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
20.
Am J Physiol Cell Physiol ; 317(6): C1278-C1288, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483701

RESUMO

Previous evidence suggests that palmitoylcarnitine incubations trigger mitochondrial-mediated apoptosis in HT29 colorectal adenocarcinoma cells, yet nontransformed cells appear insensitive. The mechanism by which palmitoylcarnitine induces cancer cell death is unclear. The purpose of this investigation was to examine the relationship between mitochondrial kinetics and glutathione buffering in determining the effect of palmitoylcarnitine on cell survival. HT29 and HCT 116 colorectal adenocarcinoma cells, CCD 841 nontransformed colon cells, and MCF7 breast adenocarcinoma cells were exposed to 0 µM, 50 µM, and 100 µM palmitoylcarnitine for 24-48 h. HCT 116 and HT29 cells showed decreased cell survival following palmitoylcarnitine compared with CCD 841 cells. Palmitoylcarnitine stimulated H2O2 emission in HT29 and CCD 841 cells but increased it to a greater level in HT29 cells due largely to a higher basal H2O2 emission. This greater H2O2 emission was associated with lower glutathione buffering capacity and caspase-3 activation in HT29 cells. The glutathione-depleting agent buthionine sulfoximine sensitized CCD 841 cells and further sensitized HT29 cells to palmitoylcarnitine-induced decreases in cell survival. MCF7 cells did not produce H2O2 when exposed to palmitoylcarnitine and were able to maintain glutathione levels. Furthermore, HT29 cells demonstrated the lowest mitochondrial oxidative kinetics vs. CCD 841 and MCF7 cells. The results demonstrate that colorectal cancer is sensitive to palmitoylcarnitine due in part to an inability to prevent oxidative stress through glutathione-redox coupling, thereby rendering the cells sensitive to elevations in H2O2. These findings suggest that the relationship between inherent metabolic capacities and redox regulation is altered early in response to palmitoylcarnitine.


Assuntos
Antineoplásicos/farmacologia , Butionina Sulfoximina/farmacologia , Células Epiteliais/efeitos dos fármacos , Glutationa/antagonistas & inibidores , Peróxido de Hidrogênio/agonistas , Palmitoilcarnitina/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Células HCT116 , Células HT29 , Humanos , Peróxido de Hidrogênio/metabolismo , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Especificidade de Órgãos , Oxirredução , Estresse Oxidativo , Cultura Primária de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA