Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175651

RESUMO

The Trans-Activator of Transcription (Tat) of Human Immunodeficiency Virus (HIV-1) is involved in virus replication and infection and can promote oxidative stress in human astroglial cells. In response, host cells activate transcription of antioxidant genes, including a subunit of System Xc- cystine/glutamate antiporter which, in turn, can trigger glutamate-mediated excitotoxicity. Here, we present data on the efficacy of bovine Lactoferrin (bLf), both in its native (Nat-bLf) and iron-saturated (Holo-bLf) forms, in counteracting oxidative stress in U373 human astroglial cells constitutively expressing the viral protein (U373-Tat). Our results show that, dependent on iron saturation, both Nat-bLf and Holo-bLf can boost host antioxidant response by up-regulating System Xc- and the cell iron exporter Ferroportin via the Nuclear factor erythroid 2-related factor (Nrf2) pathway, thus reducing Reactive Oxygen Species (ROS)-mediated lipid peroxidation and DNA damage in astrocytes. In U373-Tat cells, both forms of bLf restore the physiological internalization of Transferrin (Tf) Receptor 1, the molecular gate for Tf-bound iron uptake. The involvement of astrocytic antioxidant response in Tat-mediated neurotoxicity was evaluated in co-cultures of U373-Tat with human neuronal SH-SY5Y cells. The results show that the Holo-bLf exacerbates Tat-induced excitotoxicity on SH-SY5Y, which is directly dependent on System-Xc- upregulation, thus highlighting the mechanistic role of iron in the biological activities of the glycoprotein.


Assuntos
HIV-1 , Neuroblastoma , Humanos , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , HIV-1/metabolismo , Estresse Oxidativo , Ferro/metabolismo , Glutamatos/metabolismo
2.
BMC Genomics ; 22(1): 808, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749651

RESUMO

BACKGROUND: Meloidae (blister beetles) are known to synthetize cantharidin (CA), a toxic and defensive terpene mainly stored in male accessory glands (MAG) and emitted outward through reflex-bleeding. Recent progresses in understanding CA biosynthesis and production organ(s) in Meloidae have been made, but the way in which self-protection is achieved from the hazardous accumulation and release of CA in blister beetles has been experimentally neglected. To provide hints on this pending question, a comparative de novo assembly transcriptomic approach was performed by targeting two tissues where CA is largely accumulated and regularly circulates in Meloidae: the male reproductive tract (MRT) and the haemolymph. Differential gene expression profiles in these tissues were examined in two blister beetle species, Lydus trimaculatus (Fabricius, 1775) (tribe Lyttini) and Mylabris variabilis (Pallas, 1781) (tribe Mylabrini). Upregulated transcripts were compared between the two species to identify conserved genes possibly involved in CA detoxification and transport. RESULTS: Based on our results, we hypothesize that, to avoid auto-intoxication, ABC, MFS or other solute transporters might sequester purported glycosylated CA precursors into MAG, and lipocalins could bind CA and mitigate its reactivity when released into the haemolymph during the autohaemorrhaging response. We also found an over-representation in haemolymph of protein-domains related to coagulation and integument repairing mechanisms that likely reflects the need to limit fluid loss during reflex-bleeding. CONCLUSIONS: The de novo assembled transcriptomes of L. trimaculatus and M. variabilis here provided represent valuable genetic resources to further explore the mechanisms employed to cope with toxicity of CA in blister beetle tissues. These, if revealed, might help conceiving safe and effective drug-delivery approaches to enhance the use of CA in medicine.


Assuntos
Cantaridina , Besouros , Animais , Cantaridina/toxicidade , Besouros/genética , Genitália Masculina , Hemolinfa , Masculino , Transcriptoma
3.
J Environ Manage ; 300: 113549, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34543968

RESUMO

The impact of emerging chemical pollutants, on both status and functionality of aquatic ecosystems is worldwide recognized as a relevant issue of concern that should be assessed and managed by researchers, policymakers, and all relevant stakeholders. In Europe, the Reach Regulation has registered more than 100.000 chemical substances daily released in the environment. Furthermore, the effects related to the mixture of substances present in aquatic ecosystems may not be predictable on the basis of chemical analyses alone. This evidence, coupled with the dramatic effects of climate changes on water resources through water scarcity and flooding, makes urgent the application of innovative, fast and reliable monitoring methods. In this context, Effect-Based Methods (EBMs) have been applied in the urban stretch of the Tiber River (Central Italy) with the aim of understanding if detrimental pressures affect aquatic environmental health. In particular, different eco-genotoxicological assays have been used in order to detect genotoxic activity of chemicals present in the river, concurrently characterized by chemical analysis. Teratogenicity and embryo-toxicity have been studied in order to cover additional endpoints. The EBMs have highlighted the presence of diffuse chemical pollution and ecotoxicological effects in the three sampling stations, genotoxicological effects have been also detected through the use of different tests and organisms. The chemical analyses confirmed that in the aquatic ecosystems there is a diffuse presence, even at low concentrations, of emerging contaminants such as pharmaceuticals, not routinely monitored pesticides, personal care products, PFAS. The results of this study can help to identify an appropriate battery of EBMs for future studies and the application of more appropriate measures in order to monitor, mitigate or eliminate chemical contamination and remediate its adverse/detrimental effects on the ecosystem health.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Dano ao DNA , Ecossistema , Monitoramento Ambiental , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da Água
4.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036493

RESUMO

Mitochondrial dysfunction is a key element in the pathogenesis of neurodegenerative disorders, such as riboflavin transporter deficiency (RTD). This is a rare, childhood-onset disease characterized by motoneuron degeneration and caused by mutations in SLC52A2 and SLC52A3, encoding riboflavin (RF) transporters (RFVT2 and RFVT3, respectively), resulting in muscle weakness, ponto-bulbar paralysis and sensorineural deafness. Based on previous findings, which document the contribution of oxidative stress in RTD pathogenesis, we tested possible beneficial effects of several antioxidants (Vitamin C, Idebenone, Coenzyme Q10 and EPI-743, either alone or in combination with RF) on the morphology and function of neurons derived from induced pluripotent stem cells (iPSCs) from two RTD patients. To identify possible improvement of the neuronal morphotype, neurite length was measured by confocal microscopy after ß-III tubulin immunofluorescent staining. Neuronal function was evaluated by determining superoxide anion generation by MitoSOX assay and intracellular calcium (Ca2+) levels, using the Fluo-4 probe. Among the antioxidants tested, EPI-743 restored the redox status, improved neurite length and ameliorated intracellular calcium influx into RTD motoneurons. In conclusion, we suggest that antioxidant supplementation may have a role in RTD treatment.


Assuntos
Antioxidantes/farmacologia , Proteínas de Membrana Transportadoras/deficiência , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Riboflavina/metabolismo , Animais , Biomarcadores , Paralisia Bulbar Progressiva , Cálcio/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Perda Auditiva Neurossensorial , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Neurônios Motores/citologia , Oxirredução , Fenótipo
5.
Ecotoxicology ; 26(3): 396-404, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28188591

RESUMO

Investigations on asymmetries showed that deviations from perfect bilateral symmetry are interpreted as environmental changes inducing developmental instability. Since morphological abnormalities increase with pollution, deformations may be considered indicators of the organism exposition to pollution. Therefore, the onset of asymmetry in otherwise normally symmetrical traits has been used as a measure of some stresses as well. In this context, we studied how marine pollution affects the valve morphological alterations in the mussel Mytilus galloprovincialis. We used 180 specimens (30 per site) from the aquaculture area of Goro (River Po delta, northern Adriatic Sea), translocated, and released within 50 × 50 × 50 cm cages in five sites: two disturbed and one undisturbed near Naples (eastern Tyrrhenian Sea), and one disturbed and one undisturbed near Siracusa (western Ionian Sea). Disturbed sites were stressed by heavy industrialization and heavy tankers traffic of crude and refined oil, and were defined basing on sediment contamination. In particular, by the cone-beam computed tomography we obtained 3D virtual valve surfaces to be analyzed by the geometric morphometric techniques. Specifically, we focused the levels of the shell shape fluctuating asymmetry in relation to the degrees of marine pollution in different sites of the Tyrrhenian Sea. The Mahalanobis distances (interpreted as proxy of the individual shape asymmetry deviation from the mean asymmetry) significantly regressed with the sediment contamination gradient. Indeed, although the left-right differences were normally distributed in each studied site, the individual asymmetry scores (IAS) significantly varied amongst the investigated sites. IAS showed higher values in disturbed areas than those of undisturbed ones in both Tyrrhenian and Ionian Sea. Our results are consistent with past studies on molluscans and other taxa, demonstrating some detrimental effects of chemicals on organisms, although the investigated morphological marker did not discriminate the real disturbance source. Our findings indicate that the mussels act as a prognostic tool for sea pollution levels driving detrimental effects on benthic community.


Assuntos
Exoesqueleto/anatomia & histologia , Monitoramento Ambiental/métodos , Mytilus/anatomia & histologia , Poluição da Água/análise , Exoesqueleto/efeitos dos fármacos , Animais , Aquicultura , Biomarcadores , Mytilus/fisiologia
6.
J Neuroinflammation ; 12: 84, 2015 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-25935150

RESUMO

BACKGROUND: Amyloid ß (Aß)-induced vascular dysfunction significantly contributes to the pathogenesis of Alzheimer's disease (AD). Aß is known to impair endothelial nitric oxide synthase (eNOS) activity, thus inhibiting endothelial nitric oxide production (NO). METHOD: In this study, we investigated Aß-effects on heat shock protein 90 (HSP90) interaction with eNOS and Akt in cultured vascular endothelial cells and also explored the role of oxidative stress in this process. RESULTS: Treatments of endothelial cells (EC) with Aß promoted the constitutive association of HSP90 with eNOS but abrogated agonist (vascular endothelial growth factor (VEGF))-mediated HSP90 interaction with Akt. This effect resulted in blockade of agonist-mediated phosphorylation of Akt and eNOS at serine 1179. Furthermore, Aß stimulated the production of reactive oxygen species in endothelial cells and concomitant treatments of the cells with the antioxidant N-acetyl-cysteine (NAC) prevented Aß effects in promoting HSP90/eNOS interaction and rescued agonist-mediated Akt and eNOS phosphorylation. CONCLUSIONS: The obtained data support the hypothesis that oxidative damage caused by Aß results in altered interaction of HSP90 with Akt and eNOS, therefore promoting vascular dysfunction. This mechanism, by contributing to Aß-mediated blockade of nitric oxide production, may significantly contribute to the cognitive impairment seen in AD patients.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetilcisteína/farmacologia , Animais , Bovinos , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Células Endoteliais , Endotélio Vascular/citologia , Sequestradores de Radicais Livres/farmacologia , Imunoprecipitação , Fosforilação/efeitos dos fármacos , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
7.
Insects ; 13(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35206706

RESUMO

Members of the family Meloidae are known to produce cantharidin, a highly toxic monoterpene found in their hemolymph and exuded as droplets capable of deterring many predators. As a nuptial gift, males transfer large amounts of cantharidin to females via a spermatophore, which is formed by specific accessory glands containing high concentrations of this terpene. Using light, electron and ion beam microscopy, the ultrastructural features of the three pairs of male accessory glands as well as the glandular part of the vasa deferentia were comparatively investigated in seven species of blister beetles belonging to five different tribes and two subfamilies. All gland pairs examined share common features such as mesodermal derivation, the presence of muscle sheath, a developed rough endoplasmic reticulum, abundant mitochondria, secretory vesicles, and microvillated apical membranes. Within the same species, glands exhibit distinctive features, suggesting that each pair is responsible for the formation of a specific substance. The vasa deferentia, while showing many similarities within the family, often exhibit features unique to each of the individual species investigated, whereas the accessory glands of the first and second pairs display the highest degree of ultrastructural variability. A comparison across the species shows an interesting constancy limited to ultrastructural features in the third pair of accessory glands. The similarities and differences among the species are discussed in the light of the available literature and in relation to the potential role that blister beetles' male accessory glands could play in the storage and management of cantharidin.

8.
Antioxidants (Basel) ; 10(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34829555

RESUMO

Amyloid-ß (Aß) deposition, a hallmark of Alzheimer's disease, is known to induce free radical production and oxidative stress, leading to neuronal damage. During oxidative stress, several cell types (including astrocytes) can activate the nuclear factor erythroid 2-related factor 2 (Nrf2), a regulator of several phase II detoxifying and antioxidant genes, such as the System Xc- subunit xCT. Here, we studied (i) the effect of the Aß fragment 25-35 (Aß25-35) on Nrf2-dependent System Xc- expression in U373 human astroglial cells and (ii) the effect of Aß25-35-induced astrocytic response on neuronal cell viability using an in vitro co-culture system. We found that Aß25-35 was able to activate an antioxidant response in astrocytes, by inducing both Nrf2 activation and System Xc- up-regulation. However, this astrocytic response caused an enhanced cell mortality of co-cultured SH-SY5Y cells, taken as a neuronal model. Consistently, the specific System Xc- inhibitor sulfasalazine prevented the increase of both neuronal mortality and extracellular glutamate levels, thus indicating that the neurotoxic effect was due to an augmented release of glutamate through the transporter. The involvement of NMDA receptor activation in this pathway was also demonstrated using the specific inhibitor MK801 that completely restored neuronal viability at the control levels. The present study sheds light on the Nrf2/system Xc- pathway in the toxicity induced by Aß25-35 and may help to better understand the involvement of astrocytes in neuronal death during Alzheimer's disease.

9.
Nanomaterials (Basel) ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34684982

RESUMO

In the field of research for designing and preparing innovative nanostructured systems, these systems are able to reveal the presence of heavy metals in water samples, and can efficiently and selectively interact with them, allowing for future applications in the field of water remediation. We investigated the electronic and molecular structure, as well as the morphology, of silver nanoparticles stabilized by mixed biocompatible ligands (the amino acid L-cysteine and the organic molecule citrate) in the presence of cadmium and arsenic ions. The molecular, electronic, and local structure at the ligands/silver nanoparticles interface was probed by the complementary synchrotron radiation-induced techniques (SR-XPS, NEXAFS and XAS). The optical absorption (in the UV-Vis range) of the nanosystem was investigated in the presence of Cd(II) and As(III) and the observed behavior suggested a selective interaction with cadmium. In addition, the toxicological profile of the innovative nanosystem was assessed in vitro using a human epithelial cell line HEK293T. We analyzed the viability of the cells treated with silver nanoparticles, as well as the activation of antioxidant response.

10.
Front Cell Dev Biol ; 9: 651492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898447

RESUMO

Interaction between thyroid hormones and the immune system is reported in the literature. Thyroid hormones, thyroxine, T4, but also T3, act non-genomically through mechanisms that involve a plasma membrane receptor αvß3 integrin, a co-receptor for insulin-like growth factor-1 (IGF-1). Previous data from our laboratory show a crosstalk between thyroid hormones and IGF-1 because thyroid hormones inhibit the IGF-1-stimulated glucose uptake and cell proliferation in L-6 myoblasts, and the effects are mediated by integrin αvß3. IGF-1 also behaves as a chemokine, being an important factor for tissue regeneration after damage. In the present study, using THP-1 human leukemic monocytes, expressing αvß3 integrin in their cell membrane, we focused on the crosstalk between thyroid hormones and either IGF-1 or monocyte chemoattractant protein-1 (MCP-1), studying cell migration and proliferation stimulated by the two chemokines, and the role of αvß3 integrin, using inhibitors of αvß3 integrin and downstream pathways. Our results show that IGF-1 is a potent chemoattractant in THP-1 monocytes, stimulating cell migration, and thyroid hormone inhibits the effect through αvß3 integrin. Thyroid hormone also inhibits IGF-1-stimulated cell proliferation through αvß3 integrin, an example of a crosstalk between genomic and non-genomic effects. We also studied the effects of thyroid hormone on cell migration and proliferation induced by MCP-1, together with the pathways involved, by a pharmacological approach and docking simulation. Our findings show a different downstream signaling for IGF-1 and MCP-1 in THP-1 monocytes mediated by the plasma membrane receptor of thyroid hormones, integrin αvß3.

11.
Nitric Oxide ; 23(2): 94-100, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20638951

RESUMO

The presence of nitric oxide (NO) pathway has been well demonstrated in the main invertebrate groups, showing parallel findings on the role of NO in vertebrates and invertebrates. Noteworthy is the example of the role played by the nitrergic pathway in the sensorial functions, mainly in olfactory-like systems. On the other hand, the emerging molecular information about NOSs from lower metazoans (Porifera, cnidarians up to higher invertebrates) suggests that NO pathways might represent examples of a parallel evolution of the NOS prototypes in different animal lineages. Nevertheless, increasing evidence suggests that NO is one of the earliest and most widespread signaling molecules in living organisms. Here, we attempt to provide a survey of current knowledge of the synthesis and possible roles of NO and the related signaling pathway in lower metazoans (i.e., Porifera and Cnidaria), two phyla forming a crucial bridge spanning the evolutionary gap between the protozoans and higher metazoans. From the literature data here reported, it emerges that future research on the biological roles of NO in basal metazoans is likely to be very important for understanding the evolution of signaling systems.


Assuntos
Cnidários/metabolismo , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Poríferos/metabolismo , Animais , Cnidários/genética , GMP Cíclico/química , Evolução Molecular , Hydra/genética , Hydra/metabolismo , Óxido Nítrico/química , Poríferos/genética
12.
J Vis Exp ; (160)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32597842

RESUMO

This study focuses on understanding how growing iPSCs on different ECM coating substrates can affect cell confluence. A protocol to assess iPSC confluence in real time has been established without the need to count cells in single cell suspension to avoid any growth perturbation. A high-content image analysis system was used to assess iPCS confluence on 4 different ECMs over time in an automated manner. Different analysis settings were used to assess cell confluence of adherent iPSCs and only a slight difference (at 24 and 48 hours with laminin) has been observed whether a 60, 80 or 100% mask was applied. We also show that laminin lead to the best confluence compared to Matrigel, vitronectin and fibronectin.


Assuntos
Processamento de Imagem Assistida por Computador , Células-Tronco Pluripotentes Induzidas/citologia , Automação , Contagem de Células , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Humanos
13.
Arthropod Struct Dev ; 59: 100980, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32829176

RESUMO

Blister beetles owe their name to their ability to release cantharidin, a blistering terpene, the highest concentration of which is retained in male accessory glands. The anatomy and ultrastructure of the three pairs of male reproductive accessory glands and the glandular region of the two vasa deferentia of Meloe proscarabaeus were investigated using light, electron and ion beam microscopy. All of the mesodermal glands here analysed share a common structural organization with an outer muscular layer and an inner glandular epithelium facing a broad lumen in which the secretory products are released. Developed rough endoplasmic reticulum, Golgi systems, abundant mitochondria, numerous secretory vesicles and a microvillated apical membrane are commonly found in the cells of different glandular epithelia, suggesting that all accessory gland pairs as well as the vasa deferentia are involved in an active synthesis. Nevertheless, each pair of glands appears specialized in the production of a specific set of substances, as suggested by the peculiarities in cellular ultrastructure and by the different aspect of the secretions stored in their glandular lumen. The above cited features of male accessory glands of M. proscarabaeus are compared with those of other beetles and some hints on their potential role in producing and/or concentrating cantharidin are provided.


Assuntos
Cantaridina/metabolismo , Besouros/anatomia & histologia , Animais , Besouros/ultraestrutura , Glândulas Exócrinas/anatomia & histologia , Glândulas Exócrinas/ultraestrutura , Genitália Masculina/anatomia & histologia , Genitália Masculina/ultraestrutura , Masculino , Microscopia , Microscopia Eletrônica de Varredura
14.
Mol Neurobiol ; 56(5): 3796-3806, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30209772

RESUMO

HIV-associated neurocognitive disorders (HANDs) affect a large part of HIV-infected patients, despite highly active antiretroviral therapy. HANDs occur in the absence of a direct infection of neurons. Nevertheless, viral proteins (e.g., Tat) are capable to cause neuronal dysfunction via oxidative stress, but the cellular pathways leading to HANDs are not yet fully defined. Here, we investigated the effects of Tat on Nrf2-mediated antioxidant response and system xc- expression in U373 human astroglial cells. Moreover, the effect of Tat-producing astrocytes on neuronal cell viability was assessed using SH-SY5Y cells as a culture model. We demonstrated that Tat produced by astrocytes was able to induce Nrf2 activation and system xc- expression in astrocytes, thus reducing cell viability of co-cultured neuronal cells. Furthermore, sulfasalazine, a specific system xc- inhibitor, was able to reduce extracellular glutamate and to prevent the reduction of neuronal viability, thus demonstrating that the neurotoxic effect was dependent on an increased glutamate release through the transporter. Our findings provide evidence of the involvement of astroglial Nrf2/system xc- pathway in the neurotoxicity induced by HIV-1 Tat protein, thereby suggesting how astrocytes may exacerbate neurodegeneration through the conversion of an antioxidant response to excitotoxicity.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Astrócitos/metabolismo , HIV-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/metabolismo , Neurotoxinas/toxicidade , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Glutamatos/metabolismo , Humanos , Neurônios/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
15.
Mol Neurobiol ; 56(5): 3807, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30259412

RESUMO

The original version of this article unfortunately contained an error in the bars labels of the Fig. 8.

16.
Nanomaterials (Basel) ; 9(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739482

RESUMO

In the field of tissue engineering, recombinant protein-based biomaterials made up of block polypeptides with tunable properties arising from the functionalities of the individual domains are appealing candidates for the construction of medical devices. In this work, we focused our attention on the preparation and structural characterization of nanofibers from a chimeric-polypeptide-containing resilin and elastin domain, designed on purpose to enhance its cell-binding ability by introducing a specific fibronectin-derived Arg-Gly-Asp (RGD) sequence. The polypeptide ability to self-assemble was investigated. The molecular and supramolecular structure was characterized by Scanning Electronic Microscopy (SEM) and Atomic Force Microscopy (AFM), circular dichroism, state-of-the-art synchrotron radiation-induced techniques X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The attained complementary results allow us to assess as H-bonds influence the morphology of the aggregates obtained after the self-assembling of the chimeric polypeptide. Finally, a preliminary investigation of the potential cytotoxicity of the polypeptide was performed by culturing human fetal foreskin fibroblast (HFFF2) for its use as biomedical device.

17.
Methods Enzymol ; 440: 243-52, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18423222

RESUMO

Astrocytes respond to agents leading to progressively greater increases in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) with a linear release of arachidonic acid (ARA), due to activation of cytosolic phospholipase A(2), and with a bell-shaped curve of nitric oxide (NO) release, due to Ca(2+)-dependent activation/inhibition of neuronal NO synthase (nNOS). Inhibition of nNOS is mediated by a signaling driven by ARA, either extensively released at high [Ca(2+)](i) or supplemented to the cultures at nanomolar levels. Proinflammatory factors, as bacterial lipopolysaccharide/interferon-gamma, cause rapid ARA-dependent nNOS inhibition, critical for the delayed expression of nuclear factor-kappaB (NF-kappaB)-dependent genes as inducible NOS. We therefore propose that the onset of the neuroinflammatory response is strictly regulated by the relative amounts of NO and ARA produced by their constitutive enzymes. In particular, the inflammatory product ARA initiates the inflammatory response via inhibition of nNOS, thereby allowing NF-kappaB activation. Astrocytes contribute to the regulation of this process by producing both constitutive NO and ARA, as well as by expressing NF-kappaB-dependent genes.


Assuntos
Ácido Araquidônico/fisiologia , Astrócitos/enzimologia , Neurônios/enzimologia , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo I/fisiologia , Animais , Animais Recém-Nascidos , Ácido Araquidônico/química , Astrócitos/metabolismo , Células Cultivadas , Óxido Nítrico/biossíntese , Ratos , Ratos Sprague-Dawley
18.
Exp Gerontol ; 43(5): 415-22, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18166286

RESUMO

Cystein residues within metallothionein (MT) structure have been shown to be particularly prone to S-nitrosylation. The objective of this study was to examine the possibility that MTs undergo S-glutathionylation under nitrosative/oxidative stress. MT from rabbit liver was treated with different concentrations of GSNO, diamide plus GSH or H(2)O(2) plus GSH. Parallel sets of samples were treated with 10mM DTT for 30min at 37 degrees C to reduce mixed disulphides. Incubations were then processed for Western blot or dot-immunobinding assay. Western blot with anti-MT or anti-GSH were also performed on peripheral blood mononuclear cell extracts. Structural aspects of S-glutathionylation of MTs were also examined. Treatment with GSNO, diamide/GSH or H(2)O(2)/GSH induced a dose-dependent increase in the levels of MT S-glutathionylation. This effect was completely reversed by treatment with the reducing agent DTT, indicating that S-glutathionylation of MT protein was related to formation of protein-mixed disulphides. Structural analysis of rat MT indicated that Cys residues located in the N-terminal domain of the protein are the likely targets for S-glutathionylation, both for their solvent accessibility and electrostatics induced reactivity. S-Glutathionylation of MT, given its reversibility, would provide protection from irreversible oxidation of Cys residues, thus representing a mechanism of high potential biological relevance.


Assuntos
Glutationa/análogos & derivados , Metalotioneína/efeitos dos fármacos , Metalotioneína/metabolismo , Nitrocompostos/farmacologia , Estresse Oxidativo/fisiologia , Animais , Western Blotting , Diamida/farmacologia , Glutationa/farmacologia , Peróxido de Hidrogênio/farmacologia , Leucócitos Mononucleares , Oxidantes/farmacologia , Coelhos , Reagentes de Sulfidrila/farmacologia
19.
Mol Neurobiol ; 55(9): 7259-7270, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29397558

RESUMO

Excitotoxic stress has been associated with several different neurological disorders, and it is one of the main causes of neuronal degeneration and death. To identify new potential proteins that could represent key factors in excitotoxic stress and to study the relationship between polyamine catabolism and excitotoxic damage, a novel transgenic mouse line overexpressing spermine oxidase enzyme in the neocortex (Dach-SMOX) has been engineered. These transgenic mice are more susceptible to excitotoxic injury and display a higher oxidative stress, highlighted by 8-Oxo-2'-deoxyguanosine increase and activation of defense mechanisms, as demonstrated by the increase of nuclear factor erythroid 2-related factor 2 (Nrf-2) in the nucleus. In Dach-SMOX astrocytes and neurons, an alteration of the phosphorylated and non-phosphorylated subunits of glutamate receptors increases the kainic acid response in these mice. Moreover, a decrease in excitatory amino acid transporters and an increase in the system xc- transporter, a Nrf-2 target, was observed. Sulfasalazine, a system xc- transporter inhibitor, was shown to revert the increased susceptibility of Dach-SMOX mice treated with kainic acid. We demonstrated that astrocytes play a crucial role in this process: neuronal spermine oxidase overexpression resulted in an alteration of glutamate excitability, in glutamate uptake and efflux in astrocytes involved in the synapse. Considering the involvement of oxidative stress in many neurodegenerative diseases, Dach-SMOX transgenic mouse can be considered as a suitable in vivo genetic model to study the involvement of spermine oxidase in excitotoxicity, which can be considered as a possible therapeutic target.


Assuntos
Ácido Glutâmico/toxicidade , Neurotoxinas/toxicidade , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/patologia , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Camundongos Transgênicos , Modelos Biológicos , Fator 2 Relacionado a NF-E2/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos dos fármacos , Receptores de AMPA/metabolismo , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Poliamina Oxidase
20.
Curr Med Chem ; 14(18): 1940-4, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17691936

RESUMO

Inducible nitric oxide synthase (iNOS) is expressed in a variety of cell types, in particular in inflammatory cells, in response to diverse pro-inflammatory stimuli. This process requires critical levels of arachidonic acid (AA), generated by constitutive phospholipase A(2) (PLA(2)), promoting tyrosine kinase-dependent phosphorylation, and inhibition, of constitutive NOS. Lowering basal NO levels is indeed critical for the activation of nuclear factor-kappaB (NF-kappaB), and thus for the expression of genes (e.g. iNOS) regulated by this transcription factor. It is interesting to note that NO and AA, two small lipid soluble molecules, rapidly cross the plasma membrane thereby allowing the triggering of the above responses in distal cells. That is, constitutive NO might inhibit NF-kappaB activity in the same cells (e.g. astrocytes) in which it is generated, as well as in other cells that do not express constitutive NOS (e.g. microglia). NO from cells unable to respond to pro-inflammatory stimuli (e.g. neurons) will also contribute to these effects. Along the same line, AA released by pro-inflammatory molecules in specific cell types (e.g. astrocytes) might suppress constitutive NOS activity in the same cells as well as in other cells (e.g. neurons). Thus, AA produced at the very early stages of the inflammatory response is a likely critical signal switching the regulation of the "NO tone" from physiological (i.e. mediated by constitutive NOS) to pathological (i.e. mediated by iNOS). This second phase of the inflammatory response is often accompanied by the onset of deleterious effects in the tissue in which a critical role is played by iNOS-derived NO (directly or indirectly, i.e. via formation of peroxynitrite) as well as by products of the AA cascade. In summary, we suggest that the relative amounts of NO and AA, released by their constitutive enzymes, produce autocrine and paracrine effects regulating the onset of an inflammatory response in which, in addition to other factors, NO and AA are extensively released by their inducible enzymes.


Assuntos
Ácido Araquidônico/metabolismo , Inflamação/patologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos/fisiologia , Microglia/citologia , Microglia/metabolismo , NF-kappa B/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfolipases A/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA