Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011941, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38215155

RESUMO

Tomato yellow leaf curl virus (TYLCV, genus Begomovirus, family Geminiviridae) causes severe disease of cultivated tomatoes. Geminiviruses replicate circular single-stranded genomic DNA via rolling-circle and recombination-dependent mechanisms, frequently generating recombinants in mixed infections. Circular double-stranded intermediates of replication also serve as templates for Pol II bidirectional transcription. IS76, a recombinant derivative of TYLCV with a short sequence in the bidirectional promoter/origin-of-replication region acquired from a related begomovirus, outcompetes TYLCV in mixed infection and breaks disease resistance in tomato Ty-1 cultivars. Ty-1 encodes a γ-clade RNA-dependent RNA polymerase (RDRγ) implicated in Dicer-like (DCL)-mediated biogenesis of small interfering (si)RNAs directing gene silencing. Here, we profiled transcriptome and small RNAome of Ty-1 resistant and control susceptible plants infected with TYLCV, IS76 or their combination at early and late infection stages. We found that RDRγ boosts production rates of 21, 22 and 24 nt siRNAs from entire genomes of both viruses and modulates DCL activities in favour of 22 and 24 nt siRNAs. Compared to parental TYLCV, IS76 undergoes faster transition to the infection stage favouring rightward transcription of silencing suppressor and coat protein genes, thereby evading RDRγ activity and facilitating its DNA accumulation in both single and mixed infections. In coinfected Ty-1 plants, IS76 efficiently competes for host replication and transcription machineries, thereby impairing TYLCV replication and transcription and forcing its elimination associated with further increased siRNA production. RDRγ is constitutively overexpressed in Ty-1 plants, which correlates with begomovirus resistance, while siRNA-generating DCLs (DCL2b/d, DCL3, DCL4) and genes implicated in siRNA amplification (α-clade RDR1) and function (Argonaute2) are upregulated to similar levels in TYLCV- and IS76-infected susceptible plants. Collectively, IS76 recombination facilitates replication and promotes expression of silencing suppressor and coat proteins, which allows the recombinant virus to evade the negative impact of RDRγ-boosted production of viral siRNAs directing transcriptional and posttranscriptional silencing.


Assuntos
Begomovirus , Coinfecção , Solanum lycopersicum , Coinfecção/genética , Begomovirus/genética , Transcriptoma , RNA Interferente Pequeno/genética , Genes Virais , RNA de Cadeia Dupla , DNA , Doenças das Plantas/genética
2.
J Gen Virol ; 102(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33210990

RESUMO

Alfalfa leaf curl virus (ALCV) is the first geminivirus for which aphid transmission was reported. Transmission by Aphis craccivora was determined previously to be highly specific and circulative. Using various complementary techniques, the transmission journey of ALCV was monitored from its uptake from infected plant tissues up to the head of its vector. ALCV was shown to be restricted to phloem tissues using fluorescence in situ hybridization (FISH) and electropenetrography (EPG) monitoring of virus acquisition. Furthermore, the virus is heterogeneously distributed in phloem tissues, as revealed by FISH and quantitative PCR of viral DNA acquired by EPG-monitored aphids. Despite the efficient ingestion of viral DNA, about 106 viral DNA copies per insect in a 15 h feeding period on ALCV-infected plants, the individual maximum transmission rate was 12 %. Transmission success was related to a critical viral accumulation, around 1.6×107 viral DNA copies per insect, a threshold that generally needed more than 48 h to be reached. Moreover, whereas the amount of acquired virus did not decrease over time in the whole aphid body, it declined in the haemolymph and heads. ALCV was not detected in progenies of viruliferous aphids and did not affect aphid fitness. Compared to geminiviruses transmitted by whiteflies or leafhoppers, or to luteoviruses transmitted by aphids, the transmission efficiency of ALCV by A. craccivora is low. This result is discussed in relation to the aphid vector of this geminivirus and the agroecological features of alfalfa, a hardy perennial host plant.


Assuntos
Afídeos/virologia , Geminiviridae/fisiologia , Insetos Vetores/virologia , Medicago sativa/virologia , Doenças das Plantas/virologia , Animais , Afídeos/fisiologia , DNA Viral/genética , Geminiviridae/classificação , Geminiviridae/genética , Hibridização in Situ Fluorescente
3.
Int J Mol Sci ; 19(9)2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177671

RESUMO

Tomato yellow leaf curl virus (TYLCV, genus Begomovirus, family Geminiviridae) is a major species that causes a tomato disease for which resistant tomato hybrids (mainly carriers of the Ty-1/Ty-3 gene) are being used widely. We have characterized begomoviruses severely affecting resistant tomato crops in Southeast Spain. Circular DNA was prepared from samples by rolling circle amplification, and sequenced by massive sequencing (2015) or cloning and Sanger sequencing (2016). Thus, 23 complete sequences were determined, all belonging to the TYLCV Israel strain (TYLCV-IL). Massive sequencing also revealed the absence of other geminiviral and beta-satellite sequences. A phylogenetic analysis showed that the Spanish isolates belonged to two groups, one related to early TYLCV-IL isolates in the area (Group 1), and another (Group 2) closely related to El Jadida (Morocco) isolates, suggesting a recent introduction. The most parsimonious evolutionary scenario suggested that the TYLCV isolates of Group 2 are back recombinant isolates derived from TYLCV-IS76, a recombinant virus currently predominating in Moroccan epidemics. Thus, an infectious Group 2 clone (TYLCV-Mu15) was constructed and used in in planta competition assays against TYLCV-IS76. TYLCV-Mu15 predominated in single infections, whereas TYLCV-IS76 did so in mixed infections, providing credibility to a scenario of co-occurrence of both types of isolates.


Assuntos
Begomovirus/patogenicidade , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/virologia
4.
Arch Virol ; 162(7): 2149-2152, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28337544

RESUMO

The full-length genome sequences of two novel poleroviruses found infecting cowpea plants, cowpea polerovirus 1 (CPPV1) and cowpea polerovirus 2 (CPPV2), were determined using overlapping RT-PCR and RACE-PCR. Whereas the 5845-nt CPPV1 genome was most similar to chickpea chlorotic stunt virus (73% identity), the 5945-nt CPPV2 genome was most similar to phasey bean mild yellow virus (86% identity). The CPPV1 and CPPV2 genomes both have a typical polerovirus genome organization. Phylogenetic analysis of the inferred P1-P2 and P3 amino acid sequences confirmed that CPPV1 and CPPV2 are indeed poleroviruses. Four apparently unique recombination events were detected within a dataset of 12 full polerovirus genome sequences, including two events in the CPPV2 genome. Based on the current species demarcation criteria for the family Luteoviridae, we tentatively propose that CPPV1 and CPPV2 should be considered members of novel polerovirus species.


Assuntos
Genoma Viral , Luteoviridae/genética , Doenças das Plantas/virologia , Vigna/virologia , Burkina Faso , Luteoviridae/isolamento & purificação , Fases de Leitura Aberta , Filogenia , RNA Viral/genética
5.
J Gen Virol ; 97(12): 3433-3445, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27902403

RESUMO

Recombination events are frequently inferred from the increasing number of sequenced viral genomes, but their impact on natural viral populations has rarely been evidenced. TYLCV-IS76 is a recombinant (Begomovirus,Geminiviridae) between the Israel strain of tomato yellow leaf curl virus (TYLCV-IL) and the Spanish strain of tomato yellow leaf curl Sardinia virus (TYLCSV-ES) that was generated most probably in the late 1990s in southern Morocco (Souss). Its emergence in the 2000s coincided with the increasing use of resistant tomato cultivars bearing the Ty-1 gene, and led eventually to the entire displacement of both parental viruses in the Souss. Here, we provide compelling evidence that this viral population shift was associated with selection of TYLCV-IS76 viruses in tomato plants and particularly in Ty-1-bearing cultivars. Real-time quantitative PCR (qPCR) monitoring revealed that TYLCV-IS76 DNA accumulation in Ty-1-bearing plants was significantly higher than that of representatives of the parental virus species in single infection or competition assays. This advantage of the recombinant in Ty-1-bearing plants was not associated with a fitness cost in a susceptible, nearly isogenic, cultivar. In competition assays in the resistant cultivar, the DNA accumulation of the TYLCV-IL clone - the parent less affected by the Ty-1 gene in single infection - dropped below the qPCR detection level at 120 days post-infection (p.i.) and below the whitefly vector (Bemisia tabaci) transmissibility level at 60 days p.i. The molecular basis of the selective advantage of TYLCV-IS76 is discussed in relation to its non-canonical recombination pattern, and the RNA-dependent RNA polymerase encoded by the Ty-1 gene.


Assuntos
Begomovirus/genética , Doenças das Plantas/virologia , Recombinação Genética , Solanum lycopersicum/virologia , Animais , Begomovirus/fisiologia , Hemípteros/fisiologia , Hemípteros/virologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Marrocos
6.
J Virol ; 89(18): 9683-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26109720

RESUMO

The family Geminiviridae comprises seven genera differentiated by genome organization, sequence similarity, and insect vector. Capulavirus, an eighth genus, has been proposed to accommodate two newly discovered highly divergent geminiviruses that presently have no known vector. Alfalfa leaf curl virus, identified here as a third capulavirus, is shown to be transmitted by Aphis craccivora. This is the first report of an aphid-transmitted geminivirus.


Assuntos
Afídeos/virologia , Geminiviridae/fisiologia , Geminiviridae/ultraestrutura , Doenças das Plantas/virologia , Animais
7.
PLoS Pathog ; 7(5): e1002028, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21573141

RESUMO

Recombination has an evident impact on virus evolution and emergence of new pathotypes, and has generated an immense literature. However, the distribution of phenotypic effects caused by genome-wide random homologous recombination has never been formally investigated. Previous data on the subject have promoted the implicit view that most viral recombinant genomes are likely to be deleterious or lethal if the nucleotide identity of parental sequences is below 90%. We decided to challenge this view by creating a bank of near-random recombinants between two viral species of the genus Begomovirus (Family Geminiviridae) exhibiting 82% nucleotide identity, and by testing infectivity and in planta accumulation of recombinant clones randomly extracted from this bank. The bank was created by DNA-shuffling-a technology initially applied to the random shuffling of individual genes, and here implemented for the first time to shuffle full-length viral genomes. Together with our previously described system allowing the direct cloning of full-length infectious geminivirus genomes, it provided a unique opportunity to generate hundreds of "mosaic" virus genomes, directly testable for infectivity. A subset of 47 randomly chosen recombinants was sequenced, individually inoculated into tomato plants, and compared with the parental viruses. Surprisingly, our results showed that all recombinants were infectious and accumulated at levels comparable or intermediate to that of the parental clones. This indicates that, in our experimental system, despite the fact that the parental genomes differ by nearly 20%, lethal and/or large deleterious effects of recombination are very rare, in striking contrast to the common view that has emerged from previous studies published on other viruses.


Assuntos
Begomovirus/genética , Genoma Viral , Fenótipo , Vírus Reordenados/genética , Recombinação Genética , Agrobacterium tumefaciens/genética , Begomovirus/classificação , Clonagem Molecular , DNA Viral/genética , Escherichia coli/genética , Marcação de Genes , Estudos de Associação Genética , Solanum lycopersicum/virologia , Filogenia , Plasmídeos , Vírus Reordenados/classificação , Análise de Sequência de DNA
8.
Virology ; 578: 71-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473279

RESUMO

TYLCV-IS76, a unique recombinant between tomato yellow leaf curl virus (TYLCV) and tomato yellow leaf curl Sardinia virus (TYLCSV), has replaced its parental viruses in southern Morocco. To refine its emergence scenario, its fitness was monitored experimentally in conditions aiming at reproducing natural situations, i.e. superinfection of plants already infected with parental viruses and competition with other TYLCV/TYLCSV recombinants (LSRec) automatically generated in plants coinfected with TYLCV and TYLCSV. TYLCV-IS76 accumulated significantly more than parental viruses regardless of plant age and superinfection delay. Although TYLCV-IS76 and LSRec both accumulated more than parental viruses in laboratory conditions, LSRec were displaced by TYLCV-IS76 in nature like parental viruses were. TYLCV-IS76 did not exhibit any vector transmission advantage over LSRec and TYLCV the most competitive parental virus. Thus, it is apparently only in the plant compartment that the recombination event that generated TYLCV-IS76, induced the competitiveness advantage by which the last became first.


Assuntos
Begomovirus , Hemípteros , Solanum lycopersicum , Superinfecção , Animais , Doenças das Plantas , Begomovirus/genética
9.
Mol Ecol ; 19(19): 4365-76, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20723069

RESUMO

Bemisia tabaci, an invasive pest that causes crop damage worldwide, is a highly differentiated species complex, divided into biotypes that have mainly been defined based on mitochondrial DNA sequences. Although endosymbionts can potentially induce population differentiation, specialization and indirect selection on mtDNA, studies have largely ignored these influential passengers in B. tabaci, despite as many as seven bacterial endosymbionts have been identified. Here, we investigate the composition of the whole bacterial community in worldwide populations of B. tabaci, together with host genetic differentiation, focusing on the invasive B and Q biotypes. Among 653 individuals studied, more than 95% of them harbour at least one secondary endosymbiont, and multiple infections are very common. In addition, sequence analyses reveal a very high diversity of facultative endosymbionts in B. tabaci, with some bacterial genus being represented by more than one strain. In the B and Q biotypes, nine different strains of bacteria have been identified. The mtDNA-based phylogeny of B. tabaci also reveals a very high nucleotide diversity that partitions the two ITS clades (B and Q) into six CO1 genetic groups. Each genetic group is in linkage disequilibrium with a specific combination of endosymbionts. All together, our results demonstrate the rapid dynamics of the bacterial endosymbiont-host associations at a small evolutionary scale, questioning the role of endosymbiotic communities in the evolution of the Bemisia tabaci species complex and strengthening the need to develop a metacommunity theory of inherited endosymbionts.


Assuntos
Bactérias/classificação , Evolução Biológica , Hemípteros/genética , Hemípteros/microbiologia , Filogenia , Simbiose , Animais , Bactérias/genética , DNA Mitocondrial/genética , DNA Espaçador Ribossômico/genética , Desequilíbrio de Ligação , Dados de Sequência Molecular
10.
Virology ; 542: 20-27, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31957662

RESUMO

Tomato yellow leaf curl virus (TYLCV) and its related viruses are prone to recombination. It was reported that random homologous recombination between 20% diverging TYLCV related species is rarely deleterious and may be associated with a fitness advantage. Indeed, TYLCV-IS76, a recombinant between the 20% divergent TYLCV and tomato yellow leaf curl Sardinia virus (TYLCSV), exhibited a higher fitness than that of parental viruses. As this typical fitness advantage was observed with TYLCV-IS76 representatives of different pedigrees, it was thought that it is induced by beneficial intra-genomic interactions rather than by specific mutations. This hypothesis was further supported with TYLCV-IS141, a TYLCV recombinant with a short TYLCSV inherited fragment of around 141 nts, slightly longer than that of TYLCV-IS76. Indeed, the typical fitness advantage was detected irrespective of the position of the recombination breakpoint (loci 76 or 141) and the sequences of the TYLCV and TYLCSV inherited fragments.


Assuntos
Begomovirus/genética , Solanum lycopersicum/virologia , Begomovirus/patogenicidade , Begomovirus/fisiologia , DNA Recombinante/genética , DNA Recombinante/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Resistência à Doença/genética , Aptidão Genética , Genoma Viral , Solanum lycopersicum/genética , Mutagênese Sítio-Dirigida , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Recombinação Genética , Especificidade da Espécie
11.
Viruses ; 12(3)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164363

RESUMO

Single-stranded DNA (ssDNA) plant viruses belong to the families Geminiviridae and Nanoviridae. They are transmitted by Hemipteran insects in a circulative, mostly non-propagative, manner. While geminiviruses are transmitted by leafhoppers, treehoppers, whiteflies and aphids, nanoviruses are transmitted exclusively by aphids. Circulative transmission involves complex virus-vector interactions in which epithelial cells have to be crossed and defense mechanisms counteracted. Vector taxa are considered a relevant taxonomic criterion for virus classification, indicating that viruses can evolve specific interactions with their vectors. Thus, we predicted that, although nanoviruses and geminiviruses represent related viral families, they have evolved distinct interactions with their vector. This prediction is also supported by the non-structural Nuclear Shuttle Protein (NSP) that is involved in vector transmission in nanoviruses but has no similar function in geminiviruses. Thanks to the recent discovery of aphid-transmitted geminiviruses, this prediction could be tested for the geminivirus alfalfa leaf curl virus (ALCV) and the nanovirus faba bean necrotic stunt virus (FBNSV) in their common vector, Aphis craccivora. Estimations of viral load in midgut and head of aphids, precise localization of viral DNA in cells of insect vectors and host plants, and virus transmission tests revealed that the pathway of the two viruses across the body of their common vector differs both quantitatively and qualitatively.


Assuntos
Afídeos/virologia , Coinfecção , Geminiviridae/fisiologia , Insetos Vetores/virologia , Nanovirus/fisiologia , Animais , DNA Viral , Geminiviridae/classificação , Hibridização in Situ Fluorescente , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Nanovirus/classificação , Fenótipo , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Saliva/virologia
12.
J Gen Virol ; 90(Pt 12): 3066-3074, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19692547

RESUMO

Maize streak virus (MSV), which causes maize streak disease (MSD), is one of the most serious biotic threats to African food security. Here, we use whole MSV genomes sampled over 30 years to estimate the dates of key evolutionary events in the 500 year association of MSV and maize. The substitution rates implied by our analyses agree closely with those estimated previously in controlled MSV evolution experiments, and we use them to infer the date when the maize-adapted strain, MSV-A, was generated by recombination between two grass-adapted MSV strains. Our results indicate that this recombination event occurred in the mid-1800 s, approximately 20 years before the first credible reports of MSD in South Africa and centuries after the introduction of maize to the continent in the early 1500 s. This suggests a causal link between MSV recombination and the emergence of MSV-A as a serious pathogen of maize.


Assuntos
Evolução Molecular , Vírus do Listrado do Milho/genética , Vírus do Listrado do Milho/patogenicidade , Doenças das Plantas/virologia , Recombinação Genética , Zea mays/virologia , Teorema de Bayes , Genoma Viral , Vírus do Listrado do Milho/classificação , Dados de Sequência Molecular , Poaceae/virologia , Análise de Sequência de DNA , Virulência
13.
Arch Virol ; 154(2): 255-62, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19151912

RESUMO

Maize streak virus (MSV, Mastrevirus, Geminiviridae) is persistently transmitted by Cicadulina mbila, apparently without propagation in its leafhopper vector. MSV was shown earlier by quantitative PCR to accumulate in the alimentary canal of C. mbila. We examined the alimentary canals of C. mbila leafhoppers that acquired MSV from diseased plants for various acquisition access periods (AAP) by immunofluorescence confocal laser scanning microscopy (iCLSM) and by immunogold labelling transmission electron microscopy (iTEM). Following a 7-day AAP and a 7-day inoculation period (IP) on healthy seedlings, MSV was detected by iCLSM mainly in the filter chamber and anterior midgut. Using iTEM, large accumulations of MSV particles, usually enclosed in membranous vesicles, were detected only in cells of the midgut, inside and outside the filter chamber, following 14- or 30-day AAPs, and also following 7-day AAP and 7-day IP on healthy plants. No virus was detected in the control non-vector species C. chinaï. Coated pits or vesicles, typical of clathrin-mediated endocytosis, were not observed. We discuss an alternative endocytosis pathway and suggest that the MSV accumulations are stored in endosomes in the midgut epithelial cells.


Assuntos
Trato Gastrointestinal/virologia , Hemípteros/virologia , Insetos Vetores/virologia , Vírus do Listrado do Milho/fisiologia , Doenças das Plantas/virologia , Zea mays/virologia , Animais , Endossomos/virologia , Células Epiteliais/virologia , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Internalização do Vírus
14.
Elife ; 82019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30857590

RESUMO

A founding paradigm in virology is that the spatial unit of the viral replication cycle is an individual cell. Multipartite viruses have a segmented genome where each segment is encapsidated separately. In this situation the viral genome is not recapitulated in a single virus particle but in the viral population. How multipartite viruses manage to efficiently infect individual cells with all segments, thus with the whole genome information, is a long-standing but perhaps deceptive mystery. By localizing and quantifying the genome segments of a nanovirus in host plant tissues we show that they rarely co-occur within individual cells. We further demonstrate that distinct segments accumulate independently in different cells and that the viral system is functional through complementation across cells. Our observation deviates from the classical conceptual framework in virology and opens an alternative possibility (at least for nanoviruses) where the infection can operate at a level above the individual cell level, defining a viral multicellular way of life.


Assuntos
DNA Viral/genética , Genoma Viral , Nanovirus/genética , Doenças das Plantas/virologia , Vicia faba/virologia , Vírion/genética , Vírus de DNA , Hibridização in Situ Fluorescente , Microscopia Confocal , Nanovirus/fisiologia , Análise de Regressão , Replicação Viral
15.
Virol J ; 5: 135, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18976479

RESUMO

BACKGROUND: Viruses of the genus Begomovirus (Geminiviridae) are emerging economically important plant viruses with a circular, single-stranded DNA genome. Previous studies have shown that geminiviruses and RNA viruses exhibit similar mutation frequencies, although geminiviruses are replicated by host DNA polymerases and RNA viruses by their own virus-encoded error-prone RNA-dependent RNA-polymerase. However, the phenotypic effects of naturally occurring mutations have never been extensively investigated in geminiviruses, particularly because, to be infectious, cloned viral genomes usually require sub-cloning as complete or partial tandem repeats into a binary vector from Agrobacterium tumefaciens. RESULTS: Using Tomato yellow leaf curl virus (TYLCV), we show here that infectivity can be obtained when only a 41-nucleotide region containing a highly conserved stem-loop is repeated. A binary vector containing this 41-nt region and a unique restriction site was created, allowing direct cloning of infectious monomeric viral genomes provided that they harbour the same restriction site at the corresponding nucleotide position. This experimental system, which can be transferable to other geminiviruses, was validated by analysis of the phenotypic effect of mutations appearing in TYLCV genomes in a single tomato host plant originally inoculated with a unique viral sequence. Fourteen full-length infectious genomes extracted from this plant were directly cloned and sequenced. The mutation frequency was 1.38 x 10-4 mutation per nucleotide sequenced, similar to that found previously for another begomovirus by sequencing PCR-amplified partial sequences. Interestingly, even in this minimal pool of analysed genomes, mutants with altered properties were readily identified, one of them being fitter and reducing plant biomass more drastically than the parental clone. CONCLUSION: The cloning strategy presented here is useful for any extensive phenotyping of geminivirus variants and particularly of artificially generated mutants or recombinants.


Assuntos
Begomovirus/classificação , Begomovirus/genética , Clonagem Molecular/métodos , Mutação , Biomassa , Genoma Viral , Genótipo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/virologia , Fenótipo , Análise de Sequência de DNA
17.
Virus Res ; 253: 124-134, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29908896

RESUMO

Begomoviruses (family Geminiviridae) are frequently associated with alphasatellites and betasatellites in the Old World. Tomato yellow leaf curl virus, one of the most damaging begomovirus species worldwide, was recently found associated with betasatellites in the eastern coast of the Mediterranean Sea, and in the Middle East region. Tomato yellow leaf curl virus (TYLCV)/betasatellite associations were shown to increase TYLCV virulence in experimental conditions. The sustainability of TYLCV/satellite associations in tomato was assessed here by estimating accumulation levels of satellites in comparison to TYLCV, vector transmission efficiency, and by testing how far the popular Ty-1 resistance gene used in most TYLCV-resistant tomato cultivars in the Mediterranean Basin is effective against betasatellites. Three satellites previously isolated from okra in Burkina Faso-of the species Cotton leaf curl Gezira betasatellite, Cotton leaf curl Gezira alphasatellite and Okra leaf curl Burkina Faso alphasatellite-were shown to accumulate at levels similar to, or higher than, the helper virus TYLCV-Mld in tomato plants from 32 to 150 days post inoculation (dpi). Cotton leaf curl Gezira betasatellite (CLCuGB) reduced TYLCV-Mld accumulation whereas alphasatellites did not. Transmission tests were performed with B. tabaci from plants infected with TYLCV-Mld/CLCuGB- or TYLCV-Mld/Okra leaf curl Burkina Faso alphasatellite. At 32 dpi, both satellites were transmitted to more than 50% of TYLCV-infected test plants. Betasatellite transmission, tested further with 150 dpi source plants was successful in more than 30% of TYLCV-infected test plants. Ty-1 resistant tomato plants co-infected with TYLCV (-Mld or -IL) and CLCuGB exhibited mild leaf curling and mosaic symptoms at the early stage of infection associated with a positive effect on TYLCV-IL accumulation, while resistant plants infected with TYLCV only, were asymptomatic. Together with previous experimental studies, these results further emphasize the potential risk of betasatellites to tomato cultivation, including with Ty-1 resistant cultivars.


Assuntos
Begomovirus/fisiologia , Doenças das Plantas/virologia , Retroelementos , Vírus Satélites/fisiologia , Solanum lycopersicum/virologia , Abelmoschus/virologia , Begomovirus/genética , Resistência à Doença , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Vírus Satélites/genética
18.
ISME J ; 12(1): 173-184, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053145

RESUMO

Disease emergence events regularly result from human activities such as agriculture, which frequently brings large populations of genetically uniform hosts into contact with potential pathogens. Although viruses cause nearly 50% of emerging plant diseases, there is little systematic information about virus distribution across agro-ecological interfaces and large gaps in understanding of virus diversity in nature. Here we applied a novel landscape-scale geometagenomics approach to examine relationships between agricultural land use and distributions of plant-associated viruses in two Mediterranean-climate biodiversity hotspots (Western Cape region of South Africa and Rhône river delta region of France). In total, we analysed 1725 geo-referenced plant samples collected over two years from 4.5 × 4.5 km2 grids spanning farmlands and adjacent uncultivated vegetation. We found substantial virus prevalence (25.8-35.7%) in all ecosystems, but prevalence and identified family-level virus diversity were greatest in cultivated areas, with some virus families displaying strong agricultural associations. Our survey revealed 94 previously unknown virus species, primarily from uncultivated plants. This is the first effort to systematically evaluate plant-associated viromes across broad agro-ecological interfaces. Our findings indicate that agriculture substantially influences plant virus distributions and highlight the extent of current ignorance about the diversity and roles of viruses in nature.


Assuntos
Agricultura , Vírus de Plantas/isolamento & purificação , Biodiversidade , Clima , Ecossistema , França , Metagenômica , Vírus de Plantas/classificação , Vírus de Plantas/genética , Plantas/virologia , África do Sul
19.
Annu Rev Phytopathol ; 56: 637-677, 2018 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-30149794

RESUMO

Management of geminiviruses is a worldwide challenge because of the widespread distribution of economically important diseases caused by these viruses. Regardless of the type of agriculture, management is most effective with an integrated pest management (IPM) approach that involves measures before, during, and after the growing season. This includes starting with resistant cultivars and virus- and vector-free transplants and propagative plants. For high value vegetables, protected culture (e.g., greenhouses and screenhouses) allows for effective management but is limited owing to high cost. Protection of young plants in open fields is provided by row covers, but other measures are typically required. Measures that are used for crops in open fields include roguing infected plants and insect vector management. Application of insecticide to manage vectors (whiteflies and leafhoppers) is the most widely used measure but can cause undesirable environmental and human health issues. For annual crops, these measures can be more effective when combined with host-free periods of two to three months. Finally, given the great diversity of the viruses, their insect vectors, and the crops affected, IPM approaches need to be based on the biology and ecology of the virus and vector and the crop production system. Here, we present the general measures that can be used in an IPM program for geminivirus diseases, specific case studies, and future challenges.


Assuntos
Proteção de Cultivos/métodos , Produtos Agrícolas/virologia , Geminiviridae/fisiologia , Doenças das Plantas/prevenção & controle , Animais , Hemípteros/virologia , Insetos Vetores/virologia , Doenças das Plantas/virologia
20.
PLoS One ; 11(10): e0165188, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27764211

RESUMO

Cowpea, (Vigna unguiculata L. (Walp)) is an annual tropical grain legume. Often referred to as "poor man's meat", cowpea is one of the most important subsistence legumes cultivated in West Africa due to the high protein content of its seeds. However, African cowpea production can be seriously constrained by viral diseases that reduce yields. While twelve cowpea-infecting viruses have been reported from Africa, only three of these have so-far been reported from Burkina Faso. Here we use a virion-associated nucleic acids (VANA)-based metagenomics method to screen for the presence of cowpea viruses from plants collected from the three agro-climatic zones of Burkina Faso. Besides the three cowpea-infecting virus species which have previously been reported from Burkina Faso (Cowpea aphid borne mosaic virus [Family Potyviridae], the Blackeye cowpea mosaic virus-a strain of Bean common mosaic virus-[Family Potyviridae] and Cowpea mottle virus [Family Tombusviridae]) five additional viruses were identified: Southern cowpea mosaic virus (Sobemovirus genus), two previously uncharacterised polerovirus-like species (Family Luteoviridae), a previously uncharacterised tombusvirus-like species (Family Tombusviridae) and a previously uncharacterised mycotymovirus-like species (Family Tymoviridae). Overall, potyviruses were the most prevalent cowpea viruses (detected in 65.5% of samples) and the Southern Sudan zone of Burkina Faso was found to harbour the greatest degrees of viral diversity and viral prevalence. Partial genome sequences of the two novel polerovirus-like and tombusvirus-like species were determined and RT-PCR primers were designed for use in Burkina Faso to routinely detect all of these cowpea-associated viruses.


Assuntos
Comovirus/genética , Metagenômica , Vigna/virologia , Burkina Faso , Comovirus/classificação , Comovirus/isolamento & purificação , DNA Viral/química , DNA Viral/isolamento & purificação , DNA Viral/metabolismo , Luteoviridae/genética , Doenças das Plantas/virologia , Potyviridae/genética , Sementes/virologia , Análise de Sequência de DNA , Vigna/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA