Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 567(7747): 234-238, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814736

RESUMO

Longitudinal bone growth in children is sustained by growth plates, narrow discs of cartilage that provide a continuous supply of chondrocytes for endochondral ossification1. However, it remains unknown how this supply is maintained throughout childhood growth. Chondroprogenitors in the resting zone are thought to be gradually consumed as they supply cells for longitudinal growth1,2, but this model has never been proved. Here, using clonal genetic tracing with multicolour reporters and functional perturbations, we demonstrate that longitudinal growth during the fetal and neonatal periods involves depletion of chondroprogenitors, whereas later in life, coinciding with the formation of the secondary ossification centre, chondroprogenitors acquire the capacity for self-renewal, resulting in the formation of large, stable monoclonal columns of chondrocytes. Simultaneously, chondroprogenitors begin to express stem cell markers and undergo symmetric cell division. Regulation of the pool of self-renewing progenitors involves the hedgehog and mammalian target of rapamycin complex 1 (mTORC1) signalling pathways. Our findings indicate that a stem cell niche develops postnatally in the epiphyseal growth plate, which provides a continuous supply of chondrocytes over a prolonged period.


Assuntos
Condrócitos/citologia , Células Clonais/citologia , Lâmina de Crescimento/citologia , Nicho de Células-Tronco/fisiologia , Envelhecimento , Animais , Cartilagem/citologia , Autorrenovação Celular , Células Clonais/metabolismo , Feminino , Lâmina de Crescimento/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos
2.
EMBO J ; 39(1): e100882, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31750562

RESUMO

Maternal drug abuse during pregnancy is a rapidly escalating societal problem. Psychostimulants, including amphetamine, cocaine, and methamphetamine, are amongst the illicit drugs most commonly consumed by pregnant women. Neuropharmacology concepts posit that psychostimulants affect monoamine signaling in the nervous system by their affinities to neurotransmitter reuptake and vesicular transporters to heighten neurotransmitter availability extracellularly. Exacerbated dopamine signaling is particularly considered as a key determinant of psychostimulant action. Much less is known about possible adverse effects of these drugs on peripheral organs, and if in utero exposure induces lifelong pathologies. Here, we addressed this question by combining human RNA-seq data with cellular and mouse models of neuroendocrine development. We show that episodic maternal exposure to psychostimulants during pregnancy coincident with the intrauterine specification of pancreatic ß cells permanently impairs their ability of insulin production, leading to glucose intolerance in adult female but not male offspring. We link psychostimulant action specifically to serotonin signaling and implicate the sex-specific epigenetic reprogramming of serotonin-related gene regulatory networks upstream from the transcription factor Pet1/Fev as determinants of reduced insulin production.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Intolerância à Glucose/etiologia , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Metanfetamina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Estimulantes do Sistema Nervoso Central/toxicidade , Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Exposição Materna/efeitos adversos , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia
3.
Mol Pharmacol ; 90(4): 447-59, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458145

RESUMO

Frizzleds (FZDs) are unconventional G protein-coupled receptors that belong to the class Frizzled. They are bound and activated by the Wingless/Int-1 lipoglycoprotein (WNT) family of secreted lipoglycoproteins. To date, mechanisms of signal initiation and FZD-G protein coupling remain poorly understood. Previously, we showed that FZD6 assembles with Gαi1/Gαq (but not with Gαs, Gαo and Ga12/13), and that these inactive-state complexes are dissociated by WNTs and regulated by the phosphoprotein Dishevelled (DVL). Here, we investigated the inactive-state assembly of heterotrimeric G proteins with FZD4, a receptor important in retinal vascular development and frequently mutated in Norrie disease or familial exudative vitreoretinopathy. Live-cell imaging experiments using fluorescence recovery after photobleaching show that human FZD4 assembles-in a DVL-independent manner-with Gα12/13 but not representatives of other heterotrimeric G protein subfamilies, such as Gαi1, Gαo, Gαs, and Gαq The FZD4-G protein complex dissociates upon stimulation with WNT-3A, WNT-5A, WNT-7A, and WNT-10B. In addition, WNT-induced dynamic mass redistribution changes in untransfected and, even more so, in FZD4 green fluorescent protein-transfected cells depend on Gα12/13 Furthermore, expression of FZD4 and Gα12 or Gα13 in human embryonic kidney 293 cells induces WNT-dependent membrane recruitment of p115-RHOGEF (RHO guanine nucleotide exchange factor, molecular weight 115 kDa), a direct target of Gα12/13 signaling, underlining the functionality of an FZD4-Gα12/13-RHO signaling axis. In summary, Gα12/13-mediated WNT/FZD4 signaling through p115-RHOGEF offers an intriguing and previously unappreciated mechanistic link of FZD4 signaling to cytoskeletal rearrangements and RHO signaling with implications for the regulation of angiogenesis during embryonic and tumor development.


Assuntos
Receptores Frizzled/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Proteínas Wnt/farmacologia , Proteínas Desgrenhadas/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Transferência Ressonante de Energia de Fluorescência , Receptores Frizzled/química , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
FASEB J ; 28(5): 2293-305, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24500924

RESUMO

Frizzleds (FZDs) are classified as G-protein-coupling receptors, but how signals are initiated and specified through heterotrimeric G proteins is unknown. FZD6 regulates convergent extension movements, and its C-terminal Arg511Cys mutation causes nail dysplasia in humans. We investigated the functional relationship between FZD6, Disheveled (DVL), and heterotrimeric G proteins. Live cell imaging combined with fluorescence recovery after photobleaching (FRAP) revealed that inactive human FZD6 precouples to Gαi1 and Gαq but not to GαoA,Gαs, and Gα12 proteins. G-protein coupling is measured as a 10-20% reduction in the mobile fraction of fluorescently tagged G proteins on chemical receptor surface cross-linking. The FZD6 Arg511Cys mutation is incapable of G-protein precoupling, even though it still binds DVL. Using both FRAP and Förster resonance energy transfer (FRET) technology, we showed that the FZD6-Gαi1 and FZD-Gαq complexes dissociate on WNT-5A stimulation. Most important, G-protein precoupling of FZD6 and WNT-5A-induced signaling to extracellular signal-regulated kinase1/2 were impaired by DVL knockdown or overexpression, arguing for a strict dependence of FZD6-G-protein coupling on DVL levels and identifying DVL as a master regulator of FZD/G-protein signaling. In summary, we propose a mechanistic connection between DVL and G proteins integrating WNT, FZD, G-protein, and DVL function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores Frizzled/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Fosfoproteínas/metabolismo , Membrana Celular/metabolismo , Proteínas Desgrenhadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Mutação , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt-5a
5.
Cell Commun Signal ; 13: 2, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25627785

RESUMO

BACKGROUND: The WNT/planar-cell-polarity (PCP) pathway is a key regulator of cell polarity and directional cell movements. Core PCP proteins such as Van Gogh-like2 (VANGL2) are evolutionarily highly conserved; however, the mammalian PCP machinery is still poorly understood mainly due to lack of suitable models and quantitative methodology. WNT/PCP has been implicated in many human diseases with the most distinguished positive role in the metastatic process, which accounts for more than 90% of cancer related deaths, and presents therefore an attractive target for pharmacological interventions. However, cellular assays for the assessment of PCP signaling, which would allow a more detailed mechanistic analysis of PCP function and possibly also high throughput screening for chemical compounds targeting mammalian PCP signaling, are still missing. RESULTS: Here we describe a mammalian cell culture model, which correlates B lymphocyte migration of patient-derived MEC1 cells and asymmetric localization of fluorescently-tagged VANGL2. We show by live cell imaging that PCP proteins are polarized in MEC1 cells and that VANGL2 polarization is controlled by the same mechanism as in tissues i.e. it is dependent on casein kinase 1 activity. In addition, destruction of the actin cytoskeleton leads to migratory arrest and cell rounding while VANGL2-EGFP remains polarized suggesting that active PCP signaling visualized by polarized distribution of VANGL2 is a cause for and not a consequence of the asymmetric shape of a migrating cell. CONCLUSIONS: The presented imaging-based methodology allows overcoming limitations of earlier approaches to study the mammalian WNT/PCP pathway, which required in vivo models and analysis of complex tissues. Our system investigating PCP-like signaling on a single-cell level thus opens new possibilities for screening of compounds, which control asymmetric distribution of proteins in the PCP pathway.


Assuntos
Linfócitos B/metabolismo , Movimento Celular/imunologia , Polaridade Celular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Proteínas de Membrana/imunologia , Via de Sinalização Wnt/imunologia , Linfócitos B/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Polaridade Celular/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas de Membrana/genética , Via de Sinalização Wnt/genética
6.
Bone ; 179: 116984, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38013020

RESUMO

The age-related maturation of the human midpalatal suture is challenging to predict, but critical for successful non-surgical rapid maxillary expansion (RME). While cone-beam computed tomography (CBCT) can be used to categorize the suture into stages, it remains unclear how well the stages predict the actual micromorphology of the palate. To address this clinically relevant question, we used CBCT together with three-dimensional micro-computed tomography (µCT) analysis on 24 human palate specimens from individuals aged 14-34 years. We first classified the specimens into stages (A-E) using CBCT images and then correlated the results with our comprehensive µCT analysis. Our analysis focused on several factors, including bone volume fraction (BV/TV), sutural width, volume, interdigitation, ossification, and their associations with age, CBCT stage, and sex. Our µCT analysis revealed a decrease in sutural width and volume after the age of 20 years, accompanied by sutural closure beginning in the palatal segment. The overall rate of ossification remained low but increased after the age of 20 years. No significant differences were found between males and females. Importantly, we also found no correlation between individual age and CBCT stages. Furthermore, there was no association between CBCT stages and patalal suture volume, ossification and interdigitation. Taken together, our findings cast doubt on the reliability of CBCT stage as a means of predicting skeletal maturity of the palatal suture, as it appears to lack the precision required to accurately assess the true micromorphology of the palatal suture. Future investigations should explore whether alternative CBCT parameters may be more useful in addressing the challenging question of whether RME requires surgical bone weakening.


Assuntos
Tomografia Computadorizada de Feixe Cônico Espiral , Masculino , Feminino , Humanos , Reprodutibilidade dos Testes , Microtomografia por Raio-X , Suturas Cranianas/diagnóstico por imagem , Palato , Suturas , Maxila
7.
Sci Rep ; 13(1): 9563, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308580

RESUMO

Mechanosensory ion channels are proteins that are sensitive to mechanical forces. They are found in tissues throughout the body and play an important role in bone remodeling by sensing changes in mechanical stress and transmitting signals to bone-forming cells. Orthodontic tooth movement (OTM) is a prime example of mechanically induced bone remodeling. However, the cell-specific role of the ion channels Piezo1 and Piezo2 in OTM has not been investigated yet. Here we first identify the expression of PIEZO1/2 in the dentoalveolar hard tissues. Results showed that PIEZO1 was expressed in odontoblasts, osteoblasts, and osteocytes, while PIEZO2 was localized in odontoblasts and cementoblasts. We therefore used a Piezo1floxed/floxed mouse model in combination with Dmp1cre to inactivate Piezo1 in mature osteoblasts/cementoblasts, osteocytes/cementocytes, and odontoblasts. Inactivation of Piezo1 in these cells did not affect the overall morphology of the skull but caused significant bone loss in the craniofacial skeleton. Histological analysis revealed a significantly increased number of osteoclasts in Piezo1floxed/floxed;Dmp1cre mice, while osteoblasts were not affected. Despite this increased number of osteoclasts, orthodontic tooth movement was not altered in these mice. Our results suggest that despite Piezo1 being crucial for osteoclast function, it may be dispensable for mechanical sensing of bone remodeling.


Assuntos
Células do Tecido Conjuntivo , Osteoblastos , Animais , Camundongos , Osteoclastos , Osteócitos , Remodelação Óssea , Canais Iônicos
8.
Sci Adv ; 9(31): eadi0482, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531427

RESUMO

Mineralized tissues, such as bones or teeth, are essential structures of all vertebrates. They enable rapid movement, protection, and food processing, in addition to providing physiological functions. Although the development, regeneration, and pathogenesis of teeth and bones have been intensely studied, there is currently no tool to accurately follow the dynamics of growth and healing of these vital tissues in space and time. Here, we present the BEE-ST (Bones and tEEth Spatio-Temporal growth monitoring) approach, which allows precise quantification of development, regeneration, remodeling, and healing in any type of calcified tissue across different species. Using mouse teeth as model the turnover rate of continuously growing incisors was quantified, and role of hard/soft diet on molar root growth was shown. Furthermore, the dynamics of bones and teeth growth in lizards, frogs, birds, and zebrafish was uncovered. This approach represents an effective, highly reproducible, and versatile tool that opens up diverse possibilities in developmental biology, bone and tooth healing, tissue engineering, and disease modeling.


Assuntos
Dente , Peixe-Zebra , Camundongos , Animais , Dente/fisiologia , Raiz Dentária , Osso e Ossos , Desenvolvimento Ósseo
9.
Nat Commun ; 14(1): 3092, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248239

RESUMO

In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes.


Assuntos
Metabolismo Energético , Estudo de Associação Genômica Ampla , Animais , Humanos , Peso Corporal , Metabolismo Energético/genética , Ferritinas/genética , Rim , Homem de Neandertal
10.
Front Physiol ; 13: 998039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213247

RESUMO

Mucopolysaccharidosis VI (MPS VI) is a hereditary lysosomal storage disease caused by the absence of the enzyme arylsulfatase B (ARSB). Craniofacial defects are common in MPS VI patients and manifest as abnormalities of the facial bones, teeth, and temporomandibular joints. Although enzyme replacement therapy (ERT) is the treatment of choice for MPS VI, the effects on the craniofacial and dental structures are still poorly understood. In this study, we used an Arsb-deficient mouse model (Arsb m/m ) that mimics MPS VI to investigate the effects of ERT on dental and craniofacial structures and compared these results with clinical and radiological observations from three MPS VI patients. Using micro-computed tomography, we found that the craniofacial phenotype of the Arsb m/m mice was characterized by bone exostoses at the insertion points of the masseter muscles and an overall increased volume of the jaw bone. An early start of ERT (at 4 weeks of age for 20 weeks) resulted in a moderate improvement of these jaw anomalies, while a late start of ERT (at 12 weeks of age for 12 weeks) showed no effect on the craniofacial skeleton. While teeth typically developed in Arsb m/m mice, we observed a pronounced loss of tooth-bearing alveolar bone. This alveolar bone loss, which has not been described before in MPS VI, was also observed in one of the MPS VI patients. Interestingly, only an early start of ERT led to a complete normalization of the alveolar bone in Arsb m/m mice. The temporomandibular joints in Arsb m/m mice were deformed and had a porous articular surface. Histological analysis revealed a loss of physiological cartilage layering, which was also reflected in an altered proteoglycan content in the cartilage of Arsb m/m mice. These abnormalities could only be partially corrected by an early start of ERT. In conclusion, our results show that an early start of ERT in Arsb m/m mice achieves the best therapeutic effects for tooth, bone, and temporomandibular joint development. As the MPS VI mouse model in this study resembles the clinical findings in MPS VI patients, our results suggest enzyme replacement therapy should be started as early as possible.

11.
Nat Commun ; 13(1): 6949, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376278

RESUMO

There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates.


Assuntos
Osteogênese , Urodelos , Animais , Osso e Ossos , Cartilagem , Divisão Celular , Mamíferos
12.
Curr Biol ; 32(12): 2596-2609.e7, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35561678

RESUMO

Reef-building corals are endangered animals with a complex colonial organization. Physiological mechanisms connecting multiple polyps and integrating them into a coral colony are still enigmatic. Using live imaging, particle tracking, and mathematical modeling, we reveal how corals connect individual polyps and form integrated polyp groups via species-specific, complex, and stable networks of currents at their surface. These currents involve surface mucus of different concentrations, which regulate joint feeding of the colony. Inside the coral, within the gastrovascular system, we expose the complexity of bidirectional branching streams that connect individual polyps. This system of canals extends the surface area by 4-fold and might improve communication, nutrient supply, and symbiont transfer. Thus, individual polyps integrate via complex liquid dynamics on the surface and inside the colony.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Recifes de Corais , Meio Ambiente , Especificidade da Espécie
13.
Int J Oral Sci ; 12(1): 35, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33353934

RESUMO

Coffin-Lowry-Syndrome (CLS) is a X-linked mental retardation characterized by skeletal dysplasia and premature tooth loss. We and others have previously demonstrated that the ribosomal S6 kinase RSK2, mutated in CLS, is essential for bone and cementum formation; however, it remains to be established whether RSK2 plays also a role in mechanically induced bone remodeling during orthodontic tooth movement (OTM). We, therefore, performed OTM in wild-type (WT) mice and Rsk2-deficient mice using Nitinol tension springs that were fixed between the upper left molars and the incisors. The untreated contralateral molars served as internal controls. After 12 days of OTM, the jaws were removed and examined by micro-computed tomography (µCT), decalcified histology, and immunohistochemistry. Our analysis of the untreated teeth confirmed that the periodontal phenotype of Rsk2-deficient mice is characterized by alveolar bone loss and hypoplasia of root cementum. Quantification of OTM using µCT revealed that OTM was more than two-fold faster in Rsk2-deficient mice as compared to WT. We also observed that OTM caused alveolar bone loss and root resorptions in WT and Rsk2-deficient mice. However, quantification of these orthodontic side effects revealed no differences between WT and Rsk2-deficient mice. Taken together, Rsk2 loss-of-function accelerates OTM in mice without causing more side effects.


Assuntos
Síndrome de Coffin-Lowry , Reabsorção da Raiz , Animais , Cemento Dentário , Camundongos , Técnicas de Movimentação Dentária , Microtomografia por Raio-X
14.
Nat Commun ; 11(1): 414, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964872

RESUMO

WNT-Frizzled (FZD) signaling plays a critical role in embryonic development, stem cell regulation and tissue homeostasis. FZDs are linked to severe human pathology and are seen as a promising target for therapy. Despite intense efforts, no small molecule drugs with distinct efficacy have emerged. Here, we identify the Smoothened agonist SAG1.3 as a partial agonist of FZD6 with limited subtype selectivity. Employing extensive in silico analysis, resonance energy transfer- and luciferase-based assays we describe the mode of action of SAG1.3. We define the ability of SAG1.3 to bind to FZD6 and to induce conformational changes in the receptor, recruitment and activation of G proteins and dynamics in FZD-Dishevelled interaction. Our results provide the proof-of-principle that FZDs are targetable by small molecules acting on their seven transmembrane spanning core. Thus, we provide a starting point for a structure-guided and mechanism-based drug discovery process to exploit the potential of FZDs as therapeutic targets.


Assuntos
Proteínas Desgrenhadas/metabolismo , Descoberta de Drogas/métodos , Receptores Frizzled/agonistas , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Piridinas/química , Tiofenos/química , Via de Sinalização Wnt/efeitos dos fármacos , Membrana Celular/metabolismo , Receptores Frizzled/química , Receptores Frizzled/metabolismo , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Terapia de Alvo Molecular/métodos , Morfolinas/farmacologia , Estudo de Prova de Conceito , Purinas/farmacologia , Piridinas/farmacologia , Receptor Smoothened/agonistas , Relação Estrutura-Atividade , Tiofenos/farmacologia
15.
Nat Commun ; 11(1): 4816, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968047

RESUMO

Understanding cell types and mechanisms of dental growth is essential for reconstruction and engineering of teeth. Therefore, we investigated cellular composition of growing and non-growing mouse and human teeth. As a result, we report an unappreciated cellular complexity of the continuously-growing mouse incisor, which suggests a coherent model of cell dynamics enabling unarrested growth. This model relies on spatially-restricted stem, progenitor and differentiated populations in the epithelial and mesenchymal compartments underlying the coordinated expansion of two major branches of pulpal cells and diverse epithelial subtypes. Further comparisons of human and mouse teeth yield both parallelisms and differences in tissue heterogeneity and highlight the specifics behind growing and non-growing modes. Despite being similar at a coarse level, mouse and human teeth reveal molecular differences and species-specific cell subtypes suggesting possible evolutionary divergence. Overall, here we provide an atlas of human and mouse teeth with a focus on growth and differentiation.


Assuntos
Diferenciação Celular , Células-Tronco/citologia , Dente/citologia , Dente/crescimento & desenvolvimento , Adolescente , Adulto , Animais , Diferenciação Celular/genética , Células Epiteliais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Heterogeneidade Genética , Humanos , Incisivo/citologia , Incisivo/crescimento & desenvolvimento , Masculino , Mesoderma/citologia , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Dente Molar/citologia , Dente Molar/crescimento & desenvolvimento , Odontoblastos , Adulto Jovem
16.
Nat Commun ; 10(1): 667, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737406

RESUMO

Class F receptors are considered valuable therapeutic targets due to their role in human disease, but structural changes accompanying receptor activation remain unexplored. Employing population and cancer genomics data, structural analyses, molecular dynamics simulations, resonance energy transfer-based approaches and mutagenesis, we identify a conserved basic amino acid in TM6 in Class F receptors that acts as a molecular switch to mediate receptor activation. Across all tested Class F receptors (FZD4,5,6,7, SMO), mutation of the molecular switch confers an increased potency of agonists by stabilizing an active conformation as assessed by engineered mini G proteins as conformational sensors. Disruption of the switch abrogates the functional interaction between FZDs and the phosphoprotein Dishevelled, supporting conformational selection as a prerequisite for functional selectivity. Our studies reveal the molecular basis of a common activation mechanism conserved in all Class F receptors, which facilitates assay development and future discovery of Class F receptor-targeting drugs.


Assuntos
Modelos Teóricos , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Immunoblotting , Proteína Quinase 1 Ativada por Mitógeno , Proteína Quinase 3 Ativada por Mitógeno , Modelos Moleculares , Filogenia , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/genética
17.
Science ; 364(6444)2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31171666

RESUMO

Neural crest cells are embryonic progenitors that generate numerous cell types in vertebrates. With single-cell analysis, we show that mouse trunk neural crest cells become biased toward neuronal lineages when they delaminate from the neural tube, whereas cranial neural crest cells acquire ectomesenchyme potential dependent on activation of the transcription factor Twist1. The choices that neural crest cells make to become sensory, glial, autonomic, or mesenchymal cells can be formalized as a series of sequential binary decisions. Each branch of the decision tree involves initial coactivation of bipotential properties followed by gradual shifts toward commitment. Competing fate programs are coactivated before cells acquire fate-specific phenotypic traits. Determination of a specific fate is achieved by increased synchronization of relevant programs and concurrent repression of competing fate programs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Mesenquimais/citologia , Crista Neural/citologia , Crista Neural/embriologia , Células-Tronco Neurais/citologia , Neurogênese/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo , Tubo Neural/citologia , Tubo Neural/embriologia , Neuroglia/citologia , Neurônios/citologia , Proteínas Nucleares/metabolismo , Análise de Célula Única , Proteína 1 Relacionada a Twist/metabolismo
18.
Nat Commun ; 10(1): 2110, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068593

RESUMO

Ribosome biogenesis is a canonical hallmark of cell growth and proliferation. Here we show that execution of Epithelial-to-Mesenchymal Transition (EMT), a migratory cellular program associated with development and tumor metastasis, is fueled by upregulation of ribosome biogenesis during G1/S arrest. This unexpected EMT feature is independent of species and initiating signal, and is accompanied by release of the repressive nucleolar chromatin remodeling complex (NoRC) from rDNA, together with recruitment of the EMT-driving transcription factor Snai1 (Snail1), RNA Polymerase I (Pol I) and the Upstream Binding Factor (UBF). EMT-associated ribosome biogenesis is also coincident with increased nucleolar recruitment of Rictor, an essential component of the EMT-promoting mammalian target of rapamycin complex 2 (mTORC2). Inhibition of rRNA synthesis in vivo differentiates primary tumors to a benign, Estrogen Receptor-alpha (ERα) positive, Rictor-negative phenotype and reduces metastasis. These findings implicate the EMT-associated ribosome biogenesis program with cellular plasticity, de-differentiation, cancer progression and metastatic disease.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Ribossomos/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral/transplante , Movimento Celular/fisiologia , Nucléolo Celular/metabolismo , Embrião de Galinha , Proteínas Cromossômicas não Histona/metabolismo , DNA Ribossômico/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Ribossômico/metabolismo , Ribossomos/genética
19.
Elife ; 72018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29897331

RESUMO

Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here, we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts.


Assuntos
Encéfalo/metabolismo , Condrócitos/metabolismo , Proteínas Hedgehog/genética , Desenvolvimento Maxilofacial/genética , Morfogênese/genética , Mucosa Olfatória/metabolismo , Transdução de Sinais , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Embrião de Mamíferos , Face/anatomia & histologia , Face/embriologia , Ossos Faciais/citologia , Ossos Faciais/efeitos dos fármacos , Ossos Faciais/crescimento & desenvolvimento , Ossos Faciais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Morfogênese/efeitos dos fármacos , Mutagênicos/administração & dosagem , Cartilagens Nasais/citologia , Cartilagens Nasais/efeitos dos fármacos , Cartilagens Nasais/crescimento & desenvolvimento , Cartilagens Nasais/metabolismo , Mucosa Olfatória/citologia , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/crescimento & desenvolvimento , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tamoxifeno/administração & dosagem , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA