Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2121425119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914147

RESUMO

Distribution of Earth's biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate-trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth's environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems.


Assuntos
Ecossistema , Zosteraceae , Aclimatação , Animais , Evolução Biológica , Biomassa , Cadeia Alimentar , Invertebrados , Zosteraceae/genética
2.
Proc Biol Sci ; 289(1969): 20211762, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35193403

RESUMO

While considerable evidence exists of biogeographic patterns in the intensity of species interactions, the influence of these patterns on variation in community structure is less clear. Studying how the distributions of traits in communities vary along global gradients can inform how variation in interactions and other factors contribute to the process of community assembly. Using a model selection approach on measures of trait dispersion in crustaceans associated with eelgrass (Zostera marina) spanning 30° of latitude in two oceans, we found that dispersion strongly increased with increasing predation and decreasing latitude. Ocean and epiphyte load appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic communities were more clustered, and increasing epiphytes were associated with increased clustering. By examining how species interactions and environmental filters influence community structure across biogeographic regions, we demonstrate how both latitudinal variation in species interactions and historical contingency shape these responses. Community trait distributions have implications for ecosystem stability and functioning, and integrating large-scale observations of environmental filters, species interactions and traits can help us predict how communities may respond to environmental change.


Assuntos
Comportamento Predatório , Zosteraceae , Animais , Crustáceos , Ecossistema , Oceanos e Mares
3.
Glob Chang Biol ; 21(11): 4006-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26087148

RESUMO

Ocean acidification will disproportionately impact the growth of calcifying organisms in coral reef ecosystems. Simultaneously, sponge bioerosion rates have been shown to increase as seawater pH decreases. We conducted a 20-week experiment that included a 4-week acclimation period with a high number of replicate tanks and a fully orthogonal design with two levels of temperature (ambient and +1 °C), three levels of pH (8.1, 7.8, and 7.6), and two levels of boring sponge (Cliona varians, present and absent) to account for differences in sponge attachment and carbonate change for both living and dead coral substrate (Porites furcata). Net coral calcification, net dissolution/bioerosion, coral and sponge survival, sponge attachment, and sponge symbiont health were evaluated. Additionally, we used the empirical data from the experiment to develop a stochastic simulation of carbonate change for small coral clusters (i.e., simulated reefs). Our findings suggest differential impacts of temperature, pH and sponge presence for living and dead corals. Net coral calcification (mg CaCO3  cm(-2)  day(-1) ) was significantly reduced in treatments with increased temperature (+1 °C) and when sponges were present; acidification had no significant effect on coral calcification. Net dissolution of dead coral was primarily driven by pH, regardless of sponge presence or seawater temperature. A reevaluation of the current paradigm of coral carbonate change under future acidification and warming scenarios should include ecologically relevant timescales, species interactions, and community organization to more accurately predict ecosystem-level response to future conditions.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Poríferos/fisiologia , Água do Mar/química , Animais , Calcificação Fisiológica , Mudança Climática , Temperatura Alta , Concentração de Íons de Hidrogênio , Especificidade da Espécie
4.
Microb Ecol ; 70(2): 361-71, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25661475

RESUMO

Cyanobacteria are fundamental components of aquatic phytoplankton communities and some taxa can cause harmful blooms in coastal ecosystems. Harmful cyanobacterial blooms are typically comprised of multiple strains of a single genus or species that cannot be resolved microscopically. Florida Bay, USA, has experienced harmful cyanobacterial blooms that have been associated with the loss of eelgrass, spiny lobsters, and general food web disruption for more than two decades. To identify the strain or strains of cyanobacteria forming blooms in Florida Bay, samples were collected across the system over an annual cycle and analyzed via DNA sequencing using cyanobacterial-specific 16S rRNA gene primers, flow cytometry, and scanning electron microscopy. Analyses demonstrated that the onset of blooms in Florida Bay was coincident with a transformation of the cyanobacterial populations. When blooms were absent, the cyanobacterial population in Florida Bay was dominated by phycoerythrin-containing Synechococcus cells that were most similar to strains within Clade III. As blooms developed, the cyanobacterial community transitioned to dominance by phycocyanin-containing Synechococcus cells that were coated with mucilage, chain-forming, and genetically most similar to the coastal strains within Clade VIII. Clade VIII strains of Synechococcus are known to grow rapidly, utilize organic nutrients, and resist top-down control by protozoan grazers and viruses, all characteristics consistent with observations of cyanobacterial blooms in Florida Bay. Further, the strains of Synechococcus blooming in this system are genetically distinct from the species previously thought to cause blooms in Florida Bay, Synechococcus elongatus. Collectively, this study identified the causative organism of harmful cyanobacterial blooms in Florida Bay, demonstrates the dynamic nature of cyanobacterial stains within genera in an estuary, and affirms factors promoting Synechococcus blooms.


Assuntos
Cianobactérias/classificação , Cianobactérias/crescimento & desenvolvimento , Proliferação Nociva de Algas , Baías , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Florida , RNA Ribossômico 16S/genética , Synechococcus/classificação , Synechococcus/genética , Synechococcus/crescimento & desenvolvimento , Synechococcus/isolamento & purificação
5.
Ecology ; 93(7): 1637-47, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22919910

RESUMO

Edge effects are a dominant subject in landscape ecology literature, yet they are highly variable and poorly understood. Often, the literature suggests simple models for edge effects-positive (enhancement at the edge), negative (enhancement at the interior), or no effect (neutral)--on a variety of metrics, including abundance, diversity, and mortality. In the marine realm, much of this work has focused on fragmented seagrass habitats due to their importance for a variety of commercially important species. In this study, the settlement, recruitment, and survival of bay scallops was investigated across a variety of seagrass patch treatments. By simultaneously collecting settlers (those viable larvae available to settle and metamorphose) and recruits (those settlers that survive some period of time, in this case, 6 weeks) on the same collectors, we were able to demonstrate a "balance" between positive and negative edge effects, resulting in a net neutral effect. Scallop settlement was significantly enhanced along seagrass edges, regardless of patch type while survival was elevated within patch interiors. However, recruitment (the net result of settlement and post-settlement loss) did not vary significantly from edge to center, representing a neutral effect. Further, results suggest that post-settlement loss, most likely due to predation, appears to be the dominant mechanism structuring scallop abundance, not patterns in settlement. These data illustrate the complexity of edge effects, and suggest that the metric used to investigate the effect (be it abundance, survival, or other metrics) can often influence the magnitude and direction of the perceived effect. Traditionally, high predation along a habitat edge would have indicated an "ecological trap" for the species in question; however, this study demonstrates that, at the population level, an ecological trap may not exist.


Assuntos
Ecossistema , Pectinidae/fisiologia , Animais , Larva/fisiologia , Dinâmica Populacional
6.
Ecol Appl ; 18(6): 1501-15, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18767625

RESUMO

The removal of fish biomass by extensive commercial and recreational fishing has been hypothesized to drastically alter the strength of trophic linkages among adjacent habitats. We evaluated the effects of removing predatory fishes on trophic transfers between coral reefs and adjacent seagrass meadows by comparing fish community structure, grazing intensity, and invertebrate predation potential in predator-rich no-take sites and nearby predator-poor fished sites in the Florida Keys (USA). Exploited fishes were more abundant at the no-take sites than at the fished sites. Most of the exploited fishes were either omnivores or invertivores. More piscivores were recorded at no-take sites, but most (approximately 95%) were moderately fished and unexploited species (barracuda and bar jacks, respectively). Impacts of these consumers on lower trophic levels were modest. Herbivorous and smaller prey fish (< 10 cm total length) densities and seagrass grazing diminished with distance from reefs and were not negatively impacted by the elevated densities of exploited fishes at no-take sites. Predation by reef fishes on most tethered invertebrates was high, but exploited species impacts varied with prey type. The results of the study show that, even though abundances of reef-associated fishes have been reduced at fished sites, there is little evidence that this has produced cascading trophic effects or interrupted cross-habitat energy exchanges between coral reefs and seagrasses.


Assuntos
Biomassa , Pesqueiros , Peixes , Cadeia Alimentar , Hydrocharitaceae , Animais , Conservação dos Recursos Naturais , Florida , Densidade Demográfica
7.
Mar Pollut Bull ; 124(1): 376-387, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28778382

RESUMO

Seagrass meadows are important sites of nitrogen (N) transformations in estuaries, however, the role of N loading in driving relative rates of N fixation and denitrification in seagrass habitats is unclear. The current study quantified N fluxes in eelgrass meadows (Zostera marina (L.)) and nearby unvegetated sand in trials representing in situ and N enriched conditions. Net N2 fluxes were low or negative under in situ conditions in both eelgrass and sand. Under N enriched conditions, denitrification was higher than N-fixation, and denitrification in eelgrass was significantly higher than sand. Denitrification of water column NO3- was more significant than coupled nitrification-denitrification in the eelgrass. Denitrification was likely supported by greater organic carbon and N within the eelgrass sediment compared to sand. Eelgrass meadows in Shinnecock Bay may facilitate the ecosystem service of N removal and retention during short-term nutrient pulses that can originate from groundwater discharge and stormwater runoff.


Assuntos
Pradaria , Nitrogênio/metabolismo , Zosteraceae , Baías , Desnitrificação , Monitoramento Ambiental , New York , Nitrificação
8.
PLoS One ; 10(9): e0138206, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26368792

RESUMO

Ecophysiological stress and physical disturbance are capable of structuring meadows through a combination of direct biomass removal and recruitment limitation; however, predicting these effects at landscape scales has rarely been successful. To model environmental influence on sexual recruitment in perennial Zostera marina, we selected a sub-tidal, light-replete study site with seasonal extremes in temperature and wave energy. During an 8-year observation period, areal coverage increased from 4.8 to 42.7%. Gains were stepwise in pattern, attributable to annual recruitment of patches followed by centrifugal growth and coalescence. Recruitment varied from 13 to 4,894 patches per year. Using a multiple linear regression approach, we examined the association between patch appearance and relative wave energy, atmospheric condition and water temperature. Two models were developed, one appropriate for the dispersal of naked seeds, and another for rafted flowers. Results indicated that both modes of sexual recruitment varied as functions of wind, temperature, rainfall and wave energy, with a regime shift in wind-wave energy corresponding to periods of rapid colonization within our site. Temporal correlations between sexual recruitment and time-lagged climatic summaries highlighted floral induction, seed bank and small patch development as periods of vulnerability. Given global losses in seagrass coverage, regions of recovery and re-colonization will become increasingly important. Lacking landscape-scale process models for seagrass recruitment, temporally explicit statistical approaches presented here could be used to forecast colonization trajectories and to provide managers with real-time estimates of future meadow performance; i.e., when to expect a good year in terms of seagrass expansion. To facilitate use as forecasting tools, we did not use statistical composites or normalized variables as our predictors. This study, therefore, represents a first step toward linking remotely acquired environmental data to sexual recruitment, an important measure of seagrass performance that translates directly into landscape-scale coverage change.


Assuntos
Flores/fisiologia , Pradaria , Modelos Biológicos , Zosteraceae/fisiologia
9.
Mar Pollut Bull ; 96(1-2): 261-70, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25979812

RESUMO

Over the past decade, development along the northern coast of Jamaica has accelerated, resulting in elevated levels of sedimentation on adjacent reefs. To understand the effects of this development on sponge community dynamics, we conducted surveys at three locations with varying degrees of adjacent coastal development to quantify species richness, abundance and diversity at two depths (8-10 m and 15-18 m). Sediment accumulation rate, total suspended solids and other water quality parameters were also quantified. The sponge community at the location with the least coastal development and anthropogenic influence was often significantly different from the other two locations, and exhibited higher sponge abundance, richness, and diversity. Sponge community composition and size distribution were statistically different among locations. This study provides correlative evidence that coastal development affects aspects of sponge community ecology, although the precise mechanisms are still unclear.


Assuntos
Antozoários/crescimento & desenvolvimento , Biodiversidade , Recifes de Corais , Poríferos/crescimento & desenvolvimento , Animais , Antozoários/classificação , Jamaica , Poríferos/classificação
10.
PeerJ ; 2: e472, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071995

RESUMO

The invasive Asian shore crab, Hemigrapsus sanguineus, has recently been observed occupying salt marshes, a novel environment for this crab species. As it invades this new habitat, it is likely to interact with a number of important salt marsh species. To understand the potential effects of H. sanguineus on this ecosystem, interactions between this invasive crab and important salt marsh ecosystem engineers were examined. Laboratory experiments demonstrated competition for burrows between H. sanguineus and the native fiddler crab, Uca pugilator. Results indicate that H. sanguineus is able to displace an established fiddler crab from its burrow. Feeding experiments revealed that the presence of H. sanguineus has a significantly negative impact on the number as well as the biomass of ribbed mussels (Geukensia demissa) consumed by the green crab, Carcinus maenas, although this only occurred at high predator densities. In addition, when both crabs foraged together, there was a significant shift in the size of mussels consumed. These interactions suggests that H. sanguineus may have long-term impacts and wide-ranging negative effects on the saltmarsh ecosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA