Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 21(6): 2673-2683, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38682796

RESUMO

The permeation of small molecules across biological membranes is a crucial process that lies at the heart of life. Permeation is involved not only in the maintenance of homeostasis at the cell level but also in the absorption and biodistribution of pharmacologically active substances throughout the human body. Membranes are formed by phospholipid bilayers that represent an energy barrier for permeating molecules. Crossing this energy barrier is assumed to be a singular event, and permeation has traditionally been described as a first-order kinetic process, proportional only to the concentration gradient of the permeating substance. For a given membrane composition, permeability was believed to be a unique property dependent only on the permeating molecule itself. We provide experimental evidence that this long-held view might not be entirely correct. Liposomes were used in copermeation experiments with a fluorescent probe, where simultaneous permeation of two substances occurred over a single phospholipid bilayer. Using an assay of six commonly prescribed drugs, we have found that the presence of a copermeant can either enhance or suppress the permeation rate of the probe molecule, often more than 2-fold in each direction. This can have significant consequences for the pharmacokinetics and bioavailability of commonly prescribed drugs when used in combination and provide new insight into so-far unexplained drug-drug interactions as well as changing the perspective on how new drug candidates are evaluated and tested.


Assuntos
Lipossomos , Lipossomos/química , Bicamadas Lipídicas/metabolismo , Humanos , Fosfolipídeos/química , Medicamentos sob Prescrição/farmacocinética , Medicamentos sob Prescrição/química , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/química , Membrana Celular/metabolismo , Permeabilidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-38472727

RESUMO

The utilization of 3D printing- digital light processing (DLP) technique, for the direct fabrication of microneedles encounters the problem of drug solubility in printing resin, especially if it is predominantly composed of water. The possible solution how to ensure ideal belonging of drug and water-based printing resin is its pre-formulation in nanosuspension such as nanocrystals. This study investigates the feasibility of this approach on a resin containing nanocrystals of imiquimod (IMQ), an active used in (pre)cancerous skin conditions, well known for its problematic solubility and bioavailability. The resin blend of polyethylene glycol diacrylate and N-vinylpyrrolidone, and lithium phenyl-2,4,6-trimethylbenzoylphosphinate as a photoinitiator, was used, mixed with IMQ nanocrystals in water. The final microneedle-patches had 36 cylindrical microneedles arranged in a square grid, measuring approximately 600 µm in height and 500 µm in diameter. They contained 5wt% IMQ, which is equivalent to a commercially available cream. The homogeneity of IMQ distribution in the matrix was higher for nanocrystals compared to usual crystalline form. The release of IMQ from the patches was determined ex vivo in natural skin and revealed a 48% increase in efficacy for nanocrystal formulations compared to the crystalline form of IMQ.

3.
Pharmaceutics ; 15(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36839836

RESUMO

Owing to their complicated pathophysiology, the treatment of skin diseases necessitates a complex approach. Conventional treatment using topical corticosteroids often results in low effectiveness and the incidence of local or even systemic side effects. Nanoformulation of potent anti-inflammatory drugs has been selected as an optimal strategy for enhanced topical delivery of corticosteroids. In order to assess the efficiency of various nanoformulations, we formulated hydrocortisone (HC) and hydrocortisone-17-butyrate (HCB) into three different systems: lipid nanocapsules (LNC), polymeric nanoparticles (PNP), and ethosomes (ETZ). The systems were characterized using dynamic light scattering for their particle size and uniformity and the morphology of nanoparticles was observed by transmission electron microscopy. The nanosystems were tested using ex vivo full thickness porcine and human skin for the delivery of HC and HCB. The skin penetration was observed by confocal microscopy of fluorescently labelled nanosystems. ETZ were proposed as the most effective delivery system for both transdermal and dermal drug targeting but were also found to have a profound effect on the skin barrier with limited restoration. LNC and PNP were found to have significant effects in the dermal delivery of the actives with only minimal transdermal penetration, especially in case of HCB administration.

4.
Int J Pharm ; 648: 123577, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37931726

RESUMO

Imiquimod (IMQ) is an immunostimulating agent used in the treatment of basal cell carcinoma and actinic keratosis. Due to its low solubility and poor skin bioavailability, the dermal formulation of IMQ remains challenging. In analogy to tyre compounds used in Formula 1 racing, we compare four types of nanosystems belonging to three groups: (i) "hard" nanoparticles in the form of IMQ nanocrystals, (ii) "intermediate" nanoparticles in the form of liposomes and lipid nanocapsules, and (iii) "soft" nanoparticles in the form of a nanoemulsion based on oleic acid. The nanoemulsion and nanocrystals were able to incorporate the highest amount of IMQ (at least 2 wt%) compared to liposomes (0.03 wt%) and lipid nanocapsules (0.08 wt%). Regarding size, liposomes, and lipid nanocapsules were rather small (around 40 nm) whereas nanocrystals and nanoemulsion were larger (around 200 nm). All developed nanoformulations showed high efficiency to deliver IMQ into the skin tissue without undesirable subsequent permeation through the skin to acceptor. Especially, the 2 wt% IMQ nanoemulsion accumulated 129 µg/g IMQ in the skin, compared to 34 µg/g of a 5 wt% commercial cream. The effects of the respective nanoparticulate systems were discussed with respect to their possible diffusion kinetics (Brownian motion vs. settling) in the aqueous phase.


Assuntos
Lipossomos , Nanocápsulas , Imiquimode/química , Lipossomos/farmacologia , Pele/metabolismo , Lipídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA