Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Ecol ; 16(1): 55, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905931

RESUMO

BACKGROUND: Nematodes play a key role in soil processes with alterations in the nematode community structure having the potential to considerably influence ecosystem functioning. As a result fluctuations in nematode diversity and/or community structure can be gauged as a 'barometer' of a soil's functional biodiversity. However, a deficit exists in regards to baseline knowledge and on the impact of specific GM crops on soil nematode populations and in particular in regard to the impact of GM potatoes on the diversity of nematode populations in the rhizosphere. The goal of this project was to begin to address this knowledge gap in regards to a GM potato line, cisgenically engineered for resistance to Phytophthora infestans (responsible organism of the Irish potato famine causing late blight disease). For this, a 3 year (2013, 2014, 2015) field experimental study was completed, containing two conventional genotypes (cvs. Desiree and Sarpo Mira) and a cisgenic genotype (cv. Desiree + Rpi-vnt1). Each potato genotype was treated with different disease management strategies (weekly chemical applications and corresponding no spray control). Hence affording the opportunity to investigate the temporal impact of potato genotype, disease management strategy (and their interaction) on the potato rhizosphere nematode community. RESULTS: Nematode structure and diversity were measured through established indices, accounts and taxonomy with factors recording a significant effect limited to the climatic conditions across the three seasons of the study and chemical applications associated with the selected disease management strategy. Based on the metrics studied, the cultivation of the cisgenic potato genotype exerted no significant effect (P > 0.05) on nematode community diversity or structure. The disease management treatments led to a reduction of specific trophic groups (e.g. Predacious c-p = 4), which of interest appeared to be counteracted by a potato genotype with vigorous growth phenotype e.g. cv. Sarpo Mira. The fluctuating climates led to disparate conditions, with enrichment conditions (bacterial feeding c-p = 1) dominating during the wet seasons of 2014 and 2015 versus the dry season of 2013 which induced an environmental stress (functional guild c-p = 2) on nematode communities. CONCLUSIONS: Overall the functional guild indices in comparison to other indices or absolutes values, delivered the most accurate quantitative measurement with which to determine the occurrence of a specific disturbance relative to the cultivation of the studied cisgenic P. infestans-resistant potatoes.


Assuntos
Phytophthora infestans/fisiologia , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/parasitologia , Solo/parasitologia , Solanum tuberosum/parasitologia , Animais , Biodiversidade , Resistência à Doença , Genótipo , Nematoides/classificação , Nematoides/genética , Nematoides/isolamento & purificação , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Rizosfera , Solanum tuberosum/genética , Solanum tuberosum/imunologia
2.
Pest Manag Sci ; 73(6): 1154-1160, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27615688

RESUMO

BACKGROUND: Rhynchosporium commune is a major fungal pathogen of barley crops, and the application of fungicides, such as quinone outside inhibitors (QoIs), plays an important role in crop disease control. The genetic mechanisms linked to QoI resistance have been identified in the cytochrome b gene, with QoI resistance conferred by the G143A substitution. The objective of this study was to develop a high-throughput molecular assay to detect and identify mutations associated with QoI resistance within the Irish R. commune population. RESULTS: Leaf lesions of R. commune sampled from 74 sites during 2009-2014 and isolates from 2006 and 2007 were screened for non-synonymous mutations of the cytochrome b gene using 454 targeted sequencing. The presence of the G143A substitution was confirmed in R. commune samples at one site in 2013 and at four sites in 2014; however, the frequency of the substitution in these samples was low (2-18%). The 454 sequencing results were confirmed by PCR-RFLP and Sanger sequencing. CONCLUSION: The molecular assay that has been applied to this monitoring programme has shown that the application of 454 next-generation sequencing offers the potential for high throughput and accurate characterisation of non-synonymous mutations associated with fungicide resistance in a crop pathogen. © 2016 Society of Chemical Industry.


Assuntos
Ascomicetos/genética , Citocromos b/genética , Farmacorresistência Fúngica/genética , Fungicidas Industriais , Hordeum/microbiologia , Irlanda , Mutação , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA