Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(3): 759-774.e18, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33400916

RESUMO

To investigate circuit mechanisms underlying locomotor behavior, we used serial-section electron microscopy (EM) to acquire a synapse-resolution dataset containing the ventral nerve cord (VNC) of an adult female Drosophila melanogaster. To generate this dataset, we developed GridTape, a technology that combines automated serial-section collection with automated high-throughput transmission EM. Using this dataset, we studied neuronal networks that control leg and wing movements by reconstructing all 507 motor neurons that control the limbs. We show that a specific class of leg sensory neurons synapses directly onto motor neurons with the largest-caliber axons on both sides of the body, representing a unique pathway for fast limb control. We provide open access to the dataset and reconstructions registered to a standard atlas to permit matching of cells between EM and light microscopy data. We also provide GridTape instrumentation designs and software to make large-scale EM more accessible and affordable to the scientific community.


Assuntos
Envelhecimento/fisiologia , Drosophila melanogaster/ultraestrutura , Microscopia Eletrônica de Transmissão , Neurônios Motores/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura , Animais , Automação , Conectoma , Extremidades/inervação , Nervos Periféricos/ultraestrutura , Sinapses/ultraestrutura
2.
Nature ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926579

RESUMO

Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles1. MN activity is coordinated by complex premotor networks that facilitate the contribution of individual muscles to many different behaviours2-6. Here we use connectomics7 to analyse the wiring logic of premotor circuits controlling the Drosophila leg and wing. We find that both premotor networks cluster into modules that link MNs innervating muscles with related functions. Within most leg motor modules, the synaptic weights of each premotor neuron are proportional to the size of their target MNs, establishing a circuit basis for hierarchical MN recruitment. By contrast, wing premotor networks lack proportional synaptic connectivity, which may enable more flexible recruitment of wing steering muscles. Through comparison of the architecture of distinct motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.

3.
Nature ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926570

RESUMO

A deep understanding of how the brain controls behaviour requires mapping neural circuits down to the muscles that they control. Here, we apply automated tools to segment neurons and identify synapses in an electron microscopy dataset of an adult female Drosophila melanogaster ventral nerve cord (VNC)1, which functions like the vertebrate spinal cord to sense and control the body. We find that the fly VNC contains roughly 45 million synapses and 14,600 neuronal cell bodies. To interpret the output of the connectome, we mapped the muscle targets of leg and wing motor neurons using genetic driver lines2 and X-ray holographic nanotomography3. With this motor neuron atlas, we identified neural circuits that coordinate leg and wing movements during take-off. We provide the reconstruction of VNC circuits, the motor neuron atlas and tools for programmatic and interactive access as resources to support experimental and theoretical studies of how the nervous system controls behaviour.

4.
Curr Biol ; 34(5): 1059-1075.e5, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38402616

RESUMO

Natural behaviors are a coordinated symphony of motor acts that drive reafferent (self-induced) sensory activation. Individual sensors cannot disambiguate exafferent (externally induced) from reafferent sources. Nevertheless, animals readily differentiate between these sources of sensory signals to carry out adaptive behaviors through corollary discharge circuits (CDCs), which provide predictive motor signals from motor pathways to sensory processing and other motor pathways. Yet, how CDCs comprehensively integrate into the nervous system remains unexplored. Here, we use connectomics, neuroanatomical, physiological, and behavioral approaches to resolve the network architecture of two pairs of ascending histaminergic neurons (AHNs) in Drosophila, which function as a predictive CDC in other insects. Both AHN pairs receive input primarily from a partially overlapping population of descending neurons, especially from DNg02, which controls wing motor output. Using Ca2+ imaging and behavioral recordings, we show that AHN activation is correlated to flight behavior and precedes wing motion. Optogenetic activation of DNg02 is sufficient to activate AHNs, indicating that AHNs are activated by descending commands in advance of behavior and not as a consequence of sensory input. Downstream, each AHN pair targets predominantly non-overlapping networks, including those that process visual, auditory, and mechanosensory information, as well as networks controlling wing, haltere, and leg sensorimotor control. These results support the conclusion that the AHNs provide a predictive motor signal about wing motor state to mostly non-overlapping sensory and motor networks. Future work will determine how AHN signaling is driven by other descending neurons and interpreted by AHN downstream targets to maintain adaptive sensorimotor performance.


Assuntos
Drosophila , Neurônios , Animais , Drosophila/fisiologia , Vias Eferentes , Insetos
5.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38895426

RESUMO

In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and information bottleneck connecting the brain and the ventral nerve cord (VNC, spinal cord analogue) and comprises diverse populations of descending (DN), ascending (AN) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Integrating three separate EM datasets, we now provide a complete connectomic description of the ascending and descending neurons of the female nervous system of Drosophila and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions have been matched across hemispheres, datasets and sexes. Crucially, we have also matched 51% of DN cell types to light level data defining specific driver lines as well as classifying all ascending populations. We use these results to reveal the general architecture, tracts, neuropil innervation and connectivity of neck connective neurons. We observe connected chains of descending and ascending neurons spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analysis of circuits implicated in sex-related behaviours, including female ovipositor extrusion (DNp13), male courtship (DNa12/aSP22) and song production (AN hemilineage 08B). Our work represents the first EM-level circuit analyses spanning the entire central nervous system of an adult animal.

6.
ArXiv ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36911282

RESUMO

Comprehensive, synapse-resolution imaging of the brain will be crucial for understanding neuronal computations and function. In connectomics, this has been the sole purview of volume electron microscopy (EM), which entails an excruciatingly difficult process because it requires cutting tissue into many thin, fragile slices that then need to be imaged, aligned, and reconstructed. Unlike EM, hard X-ray imaging is compatible with thick tissues, eliminating the need for thin sectioning, and delivering fast acquisition, intrinsic alignment, and isotropic resolution. Unfortunately, current state-of-the-art X-ray microscopy provides much lower resolution, to the extent that segmenting membranes is very challenging. We propose an uncertainty-aware 3D reconstruction model that translates X-ray images to EM-like images with enhanced membrane segmentation quality, showing its potential for developing simpler, faster, and more accurate X-ray based connectomics pipelines.

7.
Neuron ; 111(20): 3230-3243.e14, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37562405

RESUMO

Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Células Receptoras Sensoriais/fisiologia , Propriocepção/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Canais Iônicos/metabolismo
8.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333334

RESUMO

Natural behaviors are a coordinated symphony of motor acts which drive self-induced or reafferent sensory activation. Single sensors only signal presence and magnitude of a sensory cue; they cannot disambiguate exafferent (externally-induced) from reafferent sources. Nevertheless, animals readily differentiate between these sources of sensory signals to make appropriate decisions and initiate adaptive behavioral outcomes. This is mediated by predictive motor signaling mechanisms, which emanate from motor control pathways to sensory processing pathways, but how predictive motor signaling circuits function at the cellular and synaptic level is poorly understood. We use a variety of techniques, including connectomics from both male and female electron microscopy volumes, transcriptomics, neuroanatomical, physiological and behavioral approaches to resolve the network architecture of two pairs of ascending histaminergic neurons (AHNs), which putatively provide predictive motor signals to several sensory and motor neuropil. Both AHN pairs receive input primarily from an overlapping population of descending neurons, many of which drive wing motor output. The two AHN pairs target almost exclusively non-overlapping downstream neural networks including those that process visual, auditory and mechanosensory information as well as networks coordinating wing, haltere, and leg motor output. These results support the conclusion that the AHN pairs multi-task, integrating a large amount of common input, then tile their output in the brain, providing predictive motor signals to non-overlapping sensory networks affecting motor control both directly and indirectly.

9.
bioRxiv ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37398440

RESUMO

Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles. Because individual muscles may be used in many different behaviors, MN activity must be flexibly coordinated by dedicated premotor circuitry, the organization of which remains largely unknown. Here, we use comprehensive reconstruction of neuron anatomy and synaptic connectivity from volumetric electron microscopy (i.e., connectomics) to analyze the wiring logic of motor circuits controlling the Drosophila leg and wing. We find that both leg and wing premotor networks are organized into modules that link MNs innervating muscles with related functions. However, the connectivity patterns within leg and wing motor modules are distinct. Leg premotor neurons exhibit proportional gradients of synaptic input onto MNs within each module, revealing a novel circuit basis for hierarchical MN recruitment. In comparison, wing premotor neurons lack proportional synaptic connectivity, which may allow muscles to be recruited in different combinations or with different relative timing. By comparing the architecture of distinct limb motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.

10.
Curr Biol ; 31(23): 5163-5175.e7, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34637749

RESUMO

To effectively control their bodies, animals rely on feedback from proprioceptive mechanosensory neurons. In the Drosophila leg, different proprioceptor subtypes monitor joint position, movement direction, and vibration. Here, we investigate how these diverse sensory signals are integrated by central proprioceptive circuits. We find that signals for leg joint position and directional movement converge in second-order neurons, revealing pathways for local feedback control of leg posture. Distinct populations of second-order neurons integrate tibia vibration signals across pairs of legs, suggesting a role in detecting external substrate vibration. In each pathway, the flow of sensory information is dynamically gated and sculpted by inhibition. Overall, our results reveal parallel pathways for processing of internal and external mechanosensory signals, which we propose mediate feedback control of leg movement and vibration sensing, respectively. The existence of a functional connectivity map also provides a resource for interpreting connectomic reconstruction of neural circuits for leg proprioception.


Assuntos
Drosophila , Propriocepção , Animais , Movimento , Propriocepção/fisiologia , Células Receptoras Sensoriais/fisiologia
11.
Nat Neurosci ; 23(12): 1637-1643, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32929244

RESUMO

Imaging neuronal networks provides a foundation for understanding the nervous system, but resolving dense nanometer-scale structures over large volumes remains challenging for light microscopy (LM) and electron microscopy (EM). Here we show that X-ray holographic nano-tomography (XNH) can image millimeter-scale volumes with sub-100-nm resolution, enabling reconstruction of dense wiring in Drosophila melanogaster and mouse nervous tissue. We performed correlative XNH and EM to reconstruct hundreds of cortical pyramidal cells and show that more superficial cells receive stronger synaptic inhibition on their apical dendrites. By combining multiple XNH scans, we imaged an adult Drosophila leg with sufficient resolution to comprehensively catalog mechanosensory neurons and trace individual motor axons from muscles to the central nervous system. To accelerate neuronal reconstructions, we trained a convolutional neural network to automatically segment neurons from XNH volumes. Thus, XNH bridges a key gap between LM and EM, providing a new avenue for neural circuit discovery.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neurônios/ultraestrutura , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Córtex Cerebral/ultraestrutura , Dendritos/fisiologia , Dendritos/ultraestrutura , Drosophila melanogaster , Feminino , Holografia , Imageamento Tridimensional , Aprendizado de Máquina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Músculo Esquelético/inervação , Músculo Esquelético/ultraestrutura , Nanotecnologia , Redes Neurais de Computação , Células Piramidais/ultraestrutura , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/ultraestrutura , Tomografia
12.
Neuron ; 108(3): 451-468.e9, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-32931754

RESUMO

Sensory experience remodels neural circuits in the early postnatal brain through mechanisms that remain to be elucidated. Applying a new method of ultrastructural analysis to the retinogeniculate circuit, we find that visual experience alters the number and structure of synapses between the retina and the thalamus. These changes require vision-dependent transcription of the receptor Fn14 in thalamic relay neurons and the induction of its ligand TWEAK in microglia. Fn14 functions to increase the number of bulbous spine-associated synapses at retinogeniculate connections, likely contributing to the strengthening of the circuit that occurs in response to visual experience. However, at retinogeniculate connections near TWEAK-expressing microglia, TWEAK signals via Fn14 to restrict the number of bulbous spines on relay neurons, leading to the elimination of a subset of connections. Thus, TWEAK and Fn14 represent an intercellular signaling axis through which microglia shape retinogeniculate connectivity in response to sensory experience.


Assuntos
Microglia/fisiologia , Microglia/ultraestrutura , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Sinapses/ultraestrutura , Animais , Citocina TWEAK/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão/métodos , Neurônios/metabolismo , Neurônios/ultraestrutura , Estimulação Luminosa , Receptor de TWEAK/metabolismo , Vias Visuais/fisiologia , Vias Visuais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA