Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Mol Genet ; 24(14): 4049-60, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25904108

RESUMO

The modification of the pre-mRNA cis-splicing process employing a pre-mRNA trans-splicing molecule (PTM) is an attractive strategy for the in situ correction of genes whose careful transcription regulation and full-length expression is determinative for protein function, as it is the case for the dysferlin (DYSF, Dysf) gene. Loss-of-function mutations of DYSF result in different types of muscular dystrophy mainly manifesting as limb girdle muscular dystrophy 2B (LGMD2B) and Miyoshi muscular dystrophy 1 (MMD1). We established a 3' replacement strategy for mutated DYSF pre-mRNAs induced by spliceosome-mediated pre-mRNA trans-splicing (SmaRT) by the use of a PTM. In contrast to previously established SmaRT strategies, we particularly focused on the identification of a suitable pre-mRNA target intron other than the optimization of the PTM design. By targeting DYSF pre-mRNA introns harbouring differentially defined 3' splice sites (3' SS), we found that target introns encoding weakly defined 3' SSs were trans-spliced successfully in vitro in human LGMD2B myoblasts as well as in vivo in skeletal muscle of wild-type and Dysf(-/-) mice. For the first time, we demonstrate rescue of Dysf protein by SmaRT in vivo. Moreover, we identified concordant qualities among the successfully targeted Dysf introns and targeted endogenous introns in previously reported SmaRT approaches that might facilitate a selective choice of target introns in future SmaRT strategies.


Assuntos
Proteínas de Membrana/genética , Proteínas Musculares/genética , Precursores de RNA/genética , Spliceossomos/genética , Trans-Splicing , Animais , Células Cultivadas , Biologia Computacional , Disferlina , Humanos , Íntrons , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Mioblastos/citologia , Mioblastos/metabolismo , Precursores de RNA/metabolismo , Sítios de Splice de RNA , Spliceossomos/metabolismo
2.
Nucleic Acids Res ; 41(17): 8391-402, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23861443

RESUMO

RNA-based therapeutic approaches using splice-switching oligonucleotides have been successfully applied to rescue dystrophin in Duchenne muscular dystrophy (DMD) preclinical models and are currently being evaluated in DMD patients. Although the modular structure of dystrophin protein tolerates internal deletions, many mutations that affect nondispensable domains of the protein require further strategies. Among these, trans-splicing technology is particularly attractive, as it allows the replacement of any mutated exon by its normal version as well as introducing missing exons or correcting duplication mutations. We have applied such a strategy in vitro by using cotransfection of pre-trans-splicing molecule (PTM) constructs along with a reporter minigene containing part of the dystrophin gene harboring the stop-codon mutation found in the mdx mouse model of DMD. Optimization of the different functional domains of the PTMs allowed achieving accurate and efficient trans-splicing of up to 30% of the transcript encoded by the cotransfected minigene. Optimized parameters included mRNA stabilization, choice of splice site sequence, inclusion of exon splice enhancers and artificial intronic sequence. Intramuscular delivery of adeno-associated virus vectors expressing PTMs allowed detectable levels of dystrophin in mdx and mdx4Cv, illustrating that a given PTM can be suitable for a variety of mutations.


Assuntos
Distrofina/genética , Trans-Splicing , Animais , Dependovirus/genética , Distrofina/análise , Éxons , Vetores Genéticos , Genótipo , Humanos , Íntrons , Camundongos , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/química , Músculos/química , Distrofia Muscular de Duchenne/genética , Células NIH 3T3 , Sítios de Splice de RNA , RNA Mensageiro/análise
3.
Histochem Cell Biol ; 141(3): 289-300, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24186058

RESUMO

The embryonic muscles of the axial skeleton and limbs take their origin from the dermomyotomes of the somites. During embryonic myogenesis, muscle precursors delaminate from the dermomyotome giving rise to the hypaxial and epaxial myotome. Mutant studies for myogenic regulatory factors have shown that the development of the hypaxial myotome differs from the formation of the epaxial myotome and that the development of the hypaxial myotome depends on the latter within the trunk region. The transcriptional networks that regulate the transition of proliferative dermomyotomal cells into the predominantly post-mitotic hypaxial myotome, as well as the eventual patterning of the myotome, are not fully understood. Similar transitions occurring during the development of the neural system have been shown to be controlled by the Atonal family of helix-loop-helix transcription factors. Here, we demonstrate that ATOH8, a member of the Atonal family, is expressed in a subset of embryonic muscle cells in the dermomyotome and myotome. Using the RNAi approach, we show that loss of ATOH8 in the lateral somites at the trunk level results in a blockage of differentiation and thus causes cells to be maintained in a predetermined state. Furthermore, we show that ATOH8 is also expressed in cultured C2C12 mouse myoblasts and becomes dramatically downregulated during their differentiation. We propose that ATOH8 plays a role during the transition of myoblasts from the proliferative phase to the differentiation phase and in the regulation of myogenesis in the hypaxial myotome of the trunk.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Padronização Corporal/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula , Embrião de Galinha , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Mioblastos/citologia , Fator Regulador Miogênico 5/biossíntese , Miogenina/biossíntese , Fator de Transcrição PAX7/biossíntese , Interferência de RNA , RNA Interferente Pequeno , Somitos/fisiologia
4.
PLoS Curr ; 4: RRN1298, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22367358

RESUMO

Dysferlin gene mutations causing LGMD2B are associated with defects in muscle membrane repair. Four stable cell lines have been established from primary human dysferlin-deficient myoblasts harbouring different mutations in the dysferlin gene. We have compared immortalized human myoblasts and myotubes carrying disease-causing mutations in dysferlin to their wild-type counterparts. Fusion of myoblasts into myotubes and expression of muscle-specific differentiation markers were investigated with special emphasis on dysferlin protein expression, subcellular localization and function in membrane repair. We found that the immortalized myoblasts and myotubes were virtually indistinguishable from their parental cell line for all of the criteria we investigated. They therefore will provide a very useful tool to further investigate dysferlin function and pathophysiology as well as to test therapeutic strategies at the cellular level.

5.
Skelet Muscle ; 1: 34, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22040608

RESUMO

BACKGROUND: Investigations into both the pathophysiology and therapeutic targets in muscle dystrophies have been hampered by the limited proliferative capacity of human myoblasts. Isolation of reliable and stable immortalized cell lines from patient biopsies is a powerful tool for investigating pathological mechanisms, including those associated with muscle aging, and for developing innovative gene-based, cell-based or pharmacological biotherapies. METHODS: Using transduction with both telomerase-expressing and cyclin-dependent kinase 4-expressing vectors, we were able to generate a battery of immortalized human muscle stem-cell lines from patients with various neuromuscular disorders. RESULTS: The immortalized human cell lines from patients with Duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, oculopharyngeal muscular dystrophy, congenital muscular dystrophy, and limb-girdle muscular dystrophy type 2B had greatly increased proliferative capacity, and maintained their potential to differentiate both in vitro and in vivo after transplantation into regenerating muscle of immunodeficient mice. CONCLUSIONS: Dystrophic cellular models are required as a supplement to animal models to assess cellular mechanisms, such as signaling defects, or to perform high-throughput screening for therapeutic molecules. These investigations have been conducted for many years on cells derived from animals, and would greatly benefit from having human cell models with prolonged proliferative capacity. Furthermore, the possibility to assess in vivo the regenerative capacity of these cells extends their potential use. The innovative cellular tools derived from several different neuromuscular diseases as described in this report will allow investigation of the pathophysiology of these disorders and assessment of new therapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA