Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(4): e2216055120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669105

RESUMO

DNA damage threatens genomic integrity and instigates stem cell failure. To bypass genotoxic lesions during replication, cells employ DNA damage tolerance (DDT), which is regulated via PCNA ubiquitination and REV1. DDT is conserved in all domains of life, yet its relevance in mammals remains unclear. Here, we show that inactivation of both PCNA-ubiquitination and REV1 results in embryonic and adult lethality, and the accumulation of DNA damage in hematopoietic stem and progenitor cells (HSPCs) that ultimately resulted in their depletion. Our results reveal the crucial relevance of DDT in the maintenance of stem cell compartments and mammalian life in unperturbed conditions.


Assuntos
Dano ao DNA , Animais , Reparo do DNA , Replicação do DNA , Células-Tronco Hematopoéticas/metabolismo , Mamíferos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitinação
2.
Haematologica ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961746

RESUMO

Differentiation of induced pluripotent stem cells (iPSCs) into hematopoietic lineages offers great therapeutic potential. During embryogenesis, hemogenic endothelium (HE) gives rise to hematopoietic stem and progenitor cells through the endothelial-to-hematopoietic transition (EHT). Understanding this process using iPSCs is key to generating functional hematopoietic stem cells (HSCs), a currently unmet challenge. In this study, we examined the role of the transcriptional factor GFI1B and its co-factor LSD1/KDM1A in EHT. To this end, we employed patient-derived iPSC lines with a dominant negative dysfunctional GFI1BQ287* and irreversible pharmacological LSD1/KDM1A inhibition in healthy iPSC lines. The formation of HE remained unaffected; however, hematopoietic output was severely reduced in both conditions. Single-cell RNA sequencing (scRNAseq) performed on the CD144+/CD31+ population derived from healthy iPSCs revealed similar expression dynamics of genes associated with in vivo EHT. Interestingly, LSD1/KDM1A inhibition in healthy lines before EHT resulted in a complete absence of hematopoietic output. However, uncommitted HE cells did not display GFI1B expression, suggesting a timed transcriptional program. To test this hypothesis, we ectopically expressed GFI1B in uncommitted HE cells, leading to downregulation of endothelial genes and upregulation of hematopoietic genes, including GATA2, KIT, RUNX1, and SPI1. Thus, we demonstrate that LSD1/KDM1A and GFI1B can function at distinct temporal points in different cellular subsets during EHT. Although GFI1B is not detected in uncommitted HE cells, its ectopic expression allows for partial hematopoietic specification. These data indicate that precisely timed expression of specific transcriptional regulators during EHT is crucial to the eventual outcome of EHT.

3.
Blood ; 136(3): 269-278, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32396940

RESUMO

The oxygen transport function of hemoglobin (HB) is thought to have arisen ∼500 million years ago, roughly coinciding with the divergence between jawless (Agnatha) and jawed (Gnathostomata) vertebrates. Intriguingly, extant HBs of jawless and jawed vertebrates were shown to have evolved twice, and independently, from different ancestral globin proteins. This raises the question of whether erythroid-specific expression of HB also evolved twice independently. In all jawed vertebrates studied to date, one of the HB gene clusters is linked to the widely expressed NPRL3 gene. Here we show that the nprl3-linked hb locus of a jawless vertebrate, the river lamprey (Lampetra fluviatilis), shares a range of structural and functional properties with the equivalent jawed vertebrate HB locus. Functional analysis demonstrates that an erythroid-specific enhancer is located in intron 7 of lamprey nprl3, which corresponds to the NPRL3 intron 7 MCS-R1 enhancer of jawed vertebrates. Collectively, our findings signify the presence of an nprl3-linked multiglobin gene locus, which contains a remote enhancer that drives globin expression in erythroid cells, before the divergence of jawless and jawed vertebrates. Different globin genes from this ancestral cluster evolved in the current NPRL3-linked HB genes in jawless and jawed vertebrates. This provides an explanation of the enigma of how, in different species, globin genes linked to the same adjacent gene could undergo convergent evolution.


Assuntos
Eritrócitos/metabolismo , Evolução Molecular , Proteínas de Peixes , Regulação da Expressão Gênica/fisiologia , Hemoglobinas , Lampreias , Animais , Proteínas de Peixes/biossíntese , Proteínas de Peixes/genética , Hemoglobinas/biossíntese , Hemoglobinas/genética , Lampreias/genética , Lampreias/metabolismo , Família Multigênica
4.
Haematologica ; 106(2): 464-473, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467144

RESUMO

Haploinsufficiency for transcription factor KLF1 causes a variety of human erythroid phenotypes, such as the In(Lu) blood type, increased HbA2 levels, and hereditary persistence of fetal hemoglobin. Severe dominant congenital dyserythropoietic anemia IV (OMIM 613673) is associated with the KLF1 p.E325K variant. CDA-IV patients display ineffective erythropoiesis and hemolysis resulting in anemia, accompanied by persistent high levels of embryonic and fetal hemoglobin. The mouse Nan strain carries a variant in the orthologous residue, KLF1 p.E339D. Klf1Nan causes dominant hemolytic anemia with many similarities to CDA-IV. Here we investigated the impact of Klf1Nan on the developmental expression patterns of the endogenous beta-like and alpha-like globins, and the human beta-like globins carried on a HBB locus transgene. We observe that the switch from primitive, yolk sac-derived, erythropoiesis to definitive, fetal liver-derived, erythropoiesis is delayed in Klf1wt/Nan embryos. This is reflected in globin expression patterns measured between E12.5 and E14.5. Cultured Klf1wt/Nan E12.5 fetal liver cells display growth- and differentiation defects. These defects likely contribute to the delayed appearance of definitive erythrocytes in the circulation of Klf1wt/Nan embryos. After E14.5, expression of the embryonic/fetal globin genes is silenced rapidly. In adult Klf1wt/Nan animals, silencing of the embryonic/fetal globin genes is impeded, but only minute amounts are expressed. Thus, in contrast to human KLF1 p.E325K, mouse KLF1 p.E339D does not lead to persistent high levels of embryonic/fetal globins. Our results support the notion that KLF1 affects gene expression in a variant-specific manner, highlighting the necessity to characterize KLF1 variant-specific phenotypes of patients in detail.


Assuntos
Anemia Diseritropoética Congênita , Fatores de Transcrição Kruppel-Like , Adulto , Animais , Diferenciação Celular , Eritropoese/genética , Hemoglobinas , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos
5.
Hum Genomics ; 14(1): 39, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33066815

RESUMO

The expression of the human ß-like globin genes follows a well-orchestrated developmental pattern, undergoing two essential switches, the first one during the first weeks of gestation (ε to γ), and the second one during the perinatal period (γ to ß). The γ- to ß-globin gene switching mechanism includes suppression of fetal (γ-globin, HbF) and activation of adult (ß-globin, HbA) globin gene transcription. In hereditary persistence of fetal hemoglobin (HPFH), the γ-globin suppression mechanism is impaired leaving these individuals with unusual elevated levels of fetal hemoglobin (HbF) in adulthood. Recently, the transcription factors KLF1 and BCL11A have been established as master regulators of the γ- to ß-globin switch. Previously, a genomic variant in the KLF1 gene, identified by linkage analysis performed on twenty-seven members of a Maltese family, was found to be associated with HPFH. However, variation in the levels of HbF among family members, and those from other reported families carrying genetic variants in KLF1, suggests additional contributors to globin switching. ASF1B was downregulated in the family members with HPFH. Here, we investigate the role of ASF1B in γ- to ß-globin switching and erythropoiesis in vivo. Mouse-human interspecies ASF1B protein identity is 91.6%. By means of knockdown functional assays in human primary erythroid cultures and analysis of the erythroid lineage in Asf1b knockout mice, we provide evidence that ASF1B is a novel contributor to steady-state erythroid differentiation, and while its loss affects the balance of globin expression, it has no major role in hemoglobin switching.


Assuntos
Proteínas de Ciclo Celular/genética , Eritropoese/genética , Chaperonas de Histonas/genética , Globinas beta/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Células HEK293 , Chaperonas de Histonas/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Interferência de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , gama-Globinas/genética
6.
Nucleic Acids Res ; 45(1): 115-126, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27651453

RESUMO

Neuroglobin (NGB) is predominantly expressed in the brain and retina. Studies suggest that NGB exerts protective effects to neuronal cells and is implicated in reducing the severity of stroke and Alzheimer's disease. However, little is known about the mechanisms which regulate the cell type-specific expression of the gene. In this study, we hypothesized that distal regulatory elements (DREs) are involved in optimal expression of the NGB gene. By chromosome conformation capture we identified two novel DREs located -70 kb upstream and +100 kb downstream from the NGB gene. ENCODE database showed the presence of DNaseI hypersensitive and transcription factors binding sites in these regions. Further analyses using luciferase reporters and chromatin immunoprecipitation suggested that the -70 kb region upstream of the NGB gene contained a neuronal-specific enhancer and GATA transcription factor binding sites. Knockdown of GATA-2 caused NGB expression to drop dramatically, indicating GATA-2 as an essential transcription factor for the activation of NGB expression. The crucial role of the DRE in NGB expression activation was further confirmed by the drop in NGB level after CRISPR-mediated deletion of the DRE. Taken together, we show that the NGB gene is regulated by a cell type-specific loop formed between its promoter and the novel DRE.


Assuntos
Cromossomos Humanos Par 14/química , Fator de Transcrição GATA2/genética , Globinas/genética , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Elementos Reguladores de Transcrição , Sítios de Ligação , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Fator de Transcrição GATA2/metabolismo , Edição de Genes , Regulação da Expressão Gênica , Genes Reporter , Globinas/antagonistas & inibidores , Globinas/metabolismo , Células HeLa , Humanos , Células K562 , Luciferases/genética , Luciferases/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina , Neurônios/citologia , Especificidade de Órgãos , Ligação Proteica , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
7.
Blood Cells Mol Dis ; 70: 2-12, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28811072

RESUMO

Across the expanse of vertebrate evolution, each species produces multiple forms of hemoglobin in erythroid cells at appropriate times and in the proper amounts. The multiple hemoglobins are encoded in two globin gene clusters in almost all species. One globin gene cluster, linked to the gene NPRL3, is preserved in all vertebrates, including a gene cluster encoding the highly divergent globins from jawless vertebrates. This preservation of synteny may reflect the presence of a powerful enhancer of globin gene expression in the NPRL3 gene. Despite substantial divergence in noncoding DNA sequences among mammals, several epigenetic features of the globin gene regulatory regions are preserved across vertebrates. The preserved features include multiple DNase hypersensitive sites, at least one of which is an enhancer, and binding by key lineage-restricted transcription factors such as GATA1 and TAL1, which in turn recruit coactivators such as P300 that catalyze acetylation of histones. The maps of epigenetic features are strongly correlated with activity in gene regulation, and resources for accessing and visualizing such maps are readily available to the community of researchers and students.


Assuntos
Regulação da Expressão Gênica , Loci Gênicos , Hemoglobinas/genética , Sequências Reguladoras de Ácido Nucleico , Animais , Elementos Facilitadores Genéticos , Epigênese Genética , Epigenômica/métodos , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Globinas/genética , Humanos , Família Multigênica , Especificidade de Órgãos/genética , Transcrição Gênica
9.
Blood ; 127(15): 1856-62, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26903544

RESUMO

Until recently our approach to analyzing human genetic diseases has been to accurately phenotype patients and sequence the genes known to be associated with those phenotypes; for example, in thalassemia, the globin loci are analyzed. Sequencing has become increasingly accessible, and thus a larger panel of genes can be analyzed and whole exome and/or whole genome sequencing can be used when no variants are found in the candidate genes. By using such approaches in patients with unexplained anemias, we have discovered that a broad range of hitherto unrelated human red cell disorders are caused by variants in KLF1, a master regulator of erythropoiesis, which were previously considered to be extremely rare causes of human genetic disease.


Assuntos
Eritrócitos/citologia , Eritropoese/genética , Fatores de Transcrição Kruppel-Like/genética , Anemia Hemolítica/genética , Animais , Antígenos de Grupos Sanguíneos , Exoma , Deleção de Genes , Regulação da Expressão Gênica , Variação Genética , Heme/química , Hemoglobinopatias/genética , Humanos , Hidropisia Fetal/genética , Ferro/química , Camundongos , Fenótipo , Estrutura Terciária de Proteína , Piruvato Quinase/deficiência , Análise de Sequência de DNA , Globinas beta/genética
10.
J Immunol ; 197(11): 4312-4324, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815426

RESUMO

Dendritic cells (DCs) play a pivotal role in the regulation of the immune response. DC development and activation is finely orchestrated through transcriptional programs. GATA1 transcription factor is required for murine DC development, and data suggest that it might be involved in the fine-tuning of the life span and function of activated DCs. We generated DC-specific Gata1 knockout mice (Gata1-KODC), which presented a 20% reduction of splenic DCs, partially explained by enhanced apoptosis. RNA sequencing analysis revealed a number of deregulated genes involved in cell survival, migration, and function. DC migration toward peripheral lymph nodes was impaired in Gata1-KODC mice. Migration assays performed in vitro showed that this defect was selective for CCL21, but not CCL19. Interestingly, we show that Gata1-KODC DCs have reduced polysialic acid levels on their surface, which is a known determinant for the proper migration of DCs toward CCL21.


Assuntos
Movimento Celular/imunologia , Quimiocina CCL21/imunologia , Células Dendríticas/imunologia , Fator de Transcrição GATA1/imunologia , Linfonodos/imunologia , Ácidos Siálicos/imunologia , Animais , Movimento Celular/genética , Quimiocina CCL19/genética , Quimiocina CCL19/imunologia , Quimiocina CCL21/genética , Células Dendríticas/citologia , Fator de Transcrição GATA1/deficiência , Linfonodos/citologia , Camundongos , Camundongos Knockout , Ácidos Siálicos/genética
11.
Nucleic Acids Res ; 44(20): 9847-9859, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27683223

RESUMO

Chtop (chromatin target of Prmt1) regulates various aspects of gene expression including transcription and mRNA export. Despite these important functions, the regulatory mechanism underlying Chtop expression remains undetermined. Using Chtop-expressing human cell lines, we demonstrate that Chtop expression is controlled via an autoregulatory negative feedback loop whereby Chtop binds its own mRNA to retain intron 2 during splicing; a premature termination codon present at the 5' end of intron 2 leads to nonsense-mediated decay of the mRNA. We also show that Chtop interacts with exon 2 of Chtop mRNA via its arginine-glycine-rich (RG) domain, and with intron 2 via its N-terminal (N1) domain; both are required for retention of intron 2. In addition, we show that hnRNP H accelerates intron 2 splicing of Chtop mRNA in a manner dependent on Chtop expression level, suggesting that Chtop and hnRNP H regulate intron 2 retention of Chtop mRNA antagonistically. Thus, the present study provides a novel molecular mechanism by which mRNA and protein levels are constitutively regulated by intron retention.


Assuntos
Regulação da Expressão Gênica , Homeostase , Íntrons , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Nucleares/genética , Splicing de RNA , RNA Mensageiro/genética , Fatores de Transcrição/genética , Regiões 5' não Traduzidas , Processamento Alternativo , Linhagem Celular , Expressão Gênica , Ordem dos Genes , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
12.
J Neurochem ; 140(2): 245-256, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889927

RESUMO

Oligodendrocytes and Schwann cells are the myelinating glia of the vertebrate nervous system and by generation of myelin sheaths allow rapid saltatory conduction. Previous in vitro work had pointed to a role of the zinc finger containing specificity proteins Sp1 and Sp3 as major regulators of glial differentiation and myelination. Here, we asked whether such a role is also evident in vivo using mice with specific deletions of Sp1 or Sp3 in myelinating glia. We also studied glia-specific conditional Sp2- and constitutive Sp4-deficient mice to include all related glutamine-rich Sp factors into our analysis. Surprisingly, we did not detect developmental Schwann cell abnormalities in any of the mutant mice. Oligodendrocyte development and differentiation was also not fundamentally affected as oligodendrocytes were present in all mouse mutants and retained their ability to differentiate and initiate myelin gene expression. The most severe defect we observed was a 50% reduction in Mbp- and proteolipid protein 1 (Plp1)-positive differentiating oligodendrocytes in Sp2 mutants at birth. Unexpectedly, glial development appeared undisturbed even in the joint absence of Sp1 and Sp3. We conclude that Sp2 has a minor effect on the differentiation of myelinating glia, and that glutamine-rich Sp proteins are not essential regulators of the process.


Assuntos
Diferenciação Celular/fisiologia , Glutamina/metabolismo , Bainha de Mielina/metabolismo , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Fator de Transcrição Sp2/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteína Básica da Mielina/metabolismo , Ratos , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo
13.
EMBO J ; 32(3): 473-86, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23299939

RESUMO

The TREX complex couples nuclear pre-mRNA processing with mRNA export and contains multiple protein components, including Uap56, Alyref, Cip29 and the multi-subunit THO complex. Here, we have identified Chtop as a novel TREX component. We show that both Chtop and Alyref activate the ATPase and RNA helicase activities of Uap56 and that Uap56 functions to recruit both Alyref and Chtop onto mRNA. As observed with the THO complex subunit Thoc5, Chtop binds to the NTF2-like domain of Nxf1, and this interaction requires arginine methylation of Chtop. Using RNAi, we show that co-knockdown of Alyref and Chtop results in a potent mRNA export block. Chtop binds to Uap56 in a mutually exclusive manner with Alyref, and Chtop binds to Nxf1 in a mutually exclusive manner with Thoc5. However, Chtop, Thoc5 and Nxf1 exist in a single complex in vivo. Together, our data indicate that TREX and Nxf1 undergo dynamic remodelling, driven by the ATPase cycle of Uap56 and post-translational modifications of Chtop.


Assuntos
Exodesoxirribonucleases/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Western Blotting , RNA Helicases DEAD-box/metabolismo , Metilação de DNA , Primers do DNA/genética , Teste de Complementação Genética , Humanos , Hibridização in Situ Fluorescente , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Interferência de RNA , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética
14.
Development ; 141(12): 2391-401, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24850855

RESUMO

Mammalian development is regulated by the interplay of tissue-specific and ubiquitously expressed transcription factors, such as Sp1. Sp1 knockout mice die in utero with multiple phenotypic aberrations, but the underlying molecular mechanism of this differentiation failure has been elusive. Here, we have used conditional knockout mice as well as the differentiation of mouse ES cells as a model with which to address this issue. To this end, we examined differentiation potential, global gene expression patterns and Sp1 target regions in Sp1 wild-type and Sp1-deficient cells representing different stages of hematopoiesis. Sp1(-/-) cells progress through most embryonic stages of blood cell development but cannot complete terminal differentiation. This failure to fully differentiate is not seen when Sp1 is knocked out at later developmental stages. For most Sp1 target and non-target genes, gene expression is unaffected by Sp1 inactivation. However, Cdx genes and multiple Hox genes are stage-specific targets of Sp1 and are downregulated at an early stage. As a consequence, expression of genes involved in hematopoietic specification is progressively deregulated. Our work demonstrates that the early absence of active Sp1 sets a cascade in motion that culminates in a failure of terminal hematopoietic differentiation and emphasizes the role of ubiquitously expressed transcription factors for tissue-specific gene regulation. In addition, our global side-by-side analysis of the response of the transcriptional network to perturbation sheds a new light on the regulatory hierarchy of hematopoietic specification.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/citologia , Fator de Transcrição Sp1/fisiologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Macrófagos/citologia , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Ligação Proteica , Células-Tronco/citologia
15.
Blood ; 125(12): 1957-67, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25538045

RESUMO

Sp1 and Sp3 belong to the specificity proteins (Sp)/Krüppel-like transcription factor family. They are closely related, ubiquitously expressed, and recognize G-rich DNA motifs. They are thought to regulate generic processes such as cell-cycle and growth control, metabolic pathways, and apoptosis. Ablation of Sp1 or Sp3 in mice is lethal, and combined haploinsufficiency results in hematopoietic defects during the fetal stages. Here, we show that in adult mice, conditional pan-hematopoietic (Mx1-Cre) ablation of either Sp1 or Sp3 has minimal impact on hematopoiesis, whereas the simultaneous loss of Sp1 and Sp3 results in severe macrothrombocytopenia. This occurs in a cell-autonomous manner as shown by megakaryocyte-specific (Pf4-Cre) double-knockout mice. We employed flow cytometry, cell culture, and electron microscopy and show that although megakaryocyte numbers are normal in bone marrow and spleen, they display a less compact demarcation membrane system and a striking inability to form proplatelets. Through megakaryocyte transcriptomics and platelet proteomics, we identified several cytoskeleton-related proteins and downstream effector kinases, including Mylk, that were downregulated upon Sp1/Sp3 depletion, providing an explanation for the observed defects in megakaryopoiesis. Supporting this notion, selective Mylk inhibition by ML7 affected proplatelet formation and stabilization and resulted in defective ITAM receptor-mediated platelet aggregation.


Assuntos
Plaquetas/citologia , Megacariócitos/citologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp3/genética , Animais , Azepinas/química , Plaquetas/metabolismo , Medula Óssea/metabolismo , Citometria de Fluxo , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Knockout , Naftalenos/química , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteoma , Transdução de Sinais , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Baço/metabolismo , Trombocitopenia/metabolismo , Fatores de Transcrição/metabolismo
16.
Br J Haematol ; 175(3): 525-530, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27434206

RESUMO

In 1993, we described an English family with beta-thalassaemia that was not linked to the beta-globin locus. Whole genome sequence analyses revealed potential causative mutations in 15 different genes, of which 4 were consistently and uniquely associated with the phenotype in all 7 affected family members, also confirmed by genetic linkage analysis. Of the 4 genes, which are present in a centromeric region of chromosome 1, ASH1L was proposed as causative through functional mRNA knock-down and chromatin-immunoprecipitation studies in human erythroid progenitor cells. Our data suggest a putative role for ASH1L (Trithorax protein) in the regulation of globin genes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Globinas beta/genética , Talassemia beta/genética , Talassemia beta/metabolismo , Linhagem Celular , Mapeamento Cromossômico , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Inativação Gênica , Ligação Genética , Variação Genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Humanos , Fenótipo , Interferência de RNA , Talassemia beta/diagnóstico
17.
Blood ; 123(10): 1586-95, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24443441

RESUMO

In this study, we report on 8 compound heterozygotes for mutations in the key erythroid transcription factor Krüppel-like factor 1 in patients who presented with severe, transfusion-dependent hemolytic anemia. In most cases, the red cells were hypochromic and microcytic, consistent with abnormalities in hemoglobin synthesis. In addition, in many cases, the red cells resembled those seen in patients with membrane defects or enzymopathies, known as chronic nonspherocytic hemolytic anemia (CNSHA). Analysis of RNA and protein in primary erythroid cells from these individuals provided evidence of abnormal globin synthesis, with persistent expression of fetal hemoglobin and, most remarkably, expression of large quantities of embryonic globins in postnatal life. The red cell membranes were abnormal, most notably expressing reduced amounts of CD44 and, consequently, manifesting the rare In(Lu) blood group. Finally, all tested patients showed abnormally low levels of the red cell enzyme pyruvate kinase, a known cause of CNSHA. These patients define a new type of severe, transfusion-dependent CNSHA caused by mutations in a trans-acting factor (Krüppel-like factor 1) and reveal an important pathway regulating embryonic globin gene expression in adult humans.


Assuntos
Anemia Hemolítica/etiologia , Hemoglobina Fetal/genética , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Mutação , Reação Transfusional , Adolescente , Adulto , Sequência de Aminoácidos , Anemia Hemolítica/sangue , Anemia Hemolítica/genética , Criança , Pré-Escolar , Sequência Conservada , Índices de Eritrócitos , Eritrócitos/metabolismo , Feminino , Hemoglobina Fetal/química , Ordem dos Genes , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Adulto Jovem , alfa-Globinas/metabolismo , Globinas beta/metabolismo
18.
Blood ; 122(20): 3391-2, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24235125

RESUMO

In this issue of Blood, Takai et al provide some tantalizing clues on how expression of the GATA1 transcription factor, a master regulator of erythroid/megakaryocytic differentiation, is suppressed in the hematopoietic stem/progenitor cell (HSPC) compartment.


Assuntos
Células Eritroides/metabolismo , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Hematopoéticas/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Animais
19.
Blood ; 121(13): 2553-62, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23361909

RESUMO

B-cell lymphoma 11A (BCL11A) downregulation in human primary adult erythroid progenitors results in elevated expression of fetal γ-globin. Recent reports showed that BCL11A expression is activated by KLF1, leading to γ-globin repression. To study regulation of erythropoiesis and globin expression by KLF1 and BCL11A in an in vivo model, we used mice carrying a human ß-globin locus transgene with combinations of Klf1 knockout, Bcl11a floxed, and EpoR(Cre) knockin alleles. We found a higher percentage of reticulocytes in adult Klf1(wt/ko) mice and a mild compensated anemia in Bcl11a(cko/cko) mice. These phenotypes were more pronounced in compound Klf1(wt/ko)::Bcl11a(cko/cko) mice. Analysis of Klf1(wt/ko), Bcl11a(cko/cko), and Klf1(wt/ko)::Bcl11a(cko/cko) mutant embryos demonstrated increased expression of mouse embryonic globins during fetal development. Expression of human γ-globin remained high in Bcl11a(cko/cko) embryos during fetal development, and this was further augmented in Klf1(wt/ko)::Bcl11a(cko/cko) embryos. After birth, expression of human γ-globin and mouse embryonic globins decreased in Bcl11a(cko/cko) and Klf1(wt/ko)::Bcl11a(cko/cko) mice, but the levels remained much higher than those observed in control animals. Collectively, our data support an important role for the KLF1-BCL11A axis in erythroid maturation and developmental regulation of globin expression.


Assuntos
Proteínas de Transporte/genética , Eritropoese/genética , Genes de Troca/genética , Globinas/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas Nucleares/genética , Animais , Proteínas de Ligação a DNA , Embrião de Mamíferos , Eritropoese/fisiologia , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Rearranjo Gênico/genética , Rearranjo Gênico/fisiologia , Genes de Troca/fisiologia , Humanos , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Proteínas Repressoras , Reticulocitose/genética , Reticulocitose/fisiologia , Baço/citologia , Baço/embriologia , Baço/metabolismo
20.
BMC Cancer ; 14: 40, 2014 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-24460801

RESUMO

BACKGROUND: Hypoxia-induced genes are potential targets in cancer therapy. Responses to hypoxia have been extensively studied in vitro, however, they may differ in vivo due to the specific tumor microenvironment. In this study gene expression profiles were obtained from fresh human lung cancer tissue fragments cultured ex vivo under different oxygen concentrations in order to study responses to hypoxia in a model that mimics human lung cancer in vivo. METHODS: Non-small cell lung cancer (NSCLC) fragments from altogether 70 patients were maintained ex vivo in normoxia or hypoxia in short-term culture. Viability, apoptosis rates and tissue hypoxia were assessed. Gene expression profiles were studied using Affymetrix GeneChip 1.0 ST microarrays. RESULTS: Apoptosis rates were comparable in normoxia and hypoxia despite different oxygenation levels, suggesting adaptation of tumor cells to hypoxia. Gene expression profiles in hypoxic compared to normoxic fragments largely overlapped with published hypoxia-signatures. While most of these genes were up-regulated by hypoxia also in NSCLC cell lines, membrane metallo-endopeptidase (MME, neprilysin, CD10) expression was not increased in hypoxia in NSCLC cell lines, but in carcinoma-associated fibroblasts isolated from non-small cell lung cancers. High MME expression was significantly associated with poor overall survival in 342 NSCLC patients in a meta-analysis of published microarray datasets. CONCLUSIONS: The novel ex vivo model allowed for the first time to analyze hypoxia-regulated gene expression in preserved human lung cancer tissue. Gene expression profiles in human hypoxic lung cancer tissue overlapped with hypoxia-signatures from cancer cell lines, however, the elastase MME was identified as a novel hypoxia-induced gene in lung cancer. Due to the lack of hypoxia effects on MME expression in NSCLC cell lines in contrast to carcinoma-associated fibroblasts, a direct up-regulation of stroma fibroblast MME expression under hypoxia might contribute to enhanced aggressiveness of hypoxic cancers.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Fibroblastos/enzimologia , Neoplasias Pulmonares/enzimologia , Neprilisina/metabolismo , Células Estromais/enzimologia , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Fibroblastos/patologia , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Neprilisina/genética , Análise de Sequência com Séries de Oligonucleotídeos , Células Estromais/patologia , Técnicas de Cultura de Tecidos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA