Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1232587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822751

RESUMO

Introduction: Alicyclobacillus has been isolated from extreme environments such as hot springs, volcanoes, as well as pasteurized acidic beverages, because it can tolerate extreme temperatures and acidity. In our previous study, Alicyclobacillus was isolated during the enrichment of methane oxidizing bacteria from Yellowstone Hot Spring samples. Methods: Physiological characterization and genomic exploration of two new Alicyclobacillus isolates, AL01A and AL05G, are the main focus of this study to identify their potential relationships with a thermoacidophilic methanotroph (Methylacidiphilum) isolated from the same hot spring sediments. Results and discussion: In the present study, both Alicyclobacillus isolates showed optimal growth at pH 3.5 and 55°C, and contain ω-alicyclic fatty acids as a major lipid (ca. 60%) in the bacterial membrane. Genomic analysis of these strains revealed specific genes and pathways that the methanotroph genome does not have in the intermediary carbon metabolism pathway such as serC (phosphoserine aminotransferase), comA (phosphosulfolactate synthase), and DAK (glycerone kinase). Both Alicyclobacillus strains were also found to contain transporter systems for extracellular sulfate (ABC transporter), suggesting that they could play an important role in sulfur metabolism in this extreme environment. Genomic analysis of vitamin metabolism revealed Alicyclobacillus and Methylacidiphilum are able to complement each other's nutritional deficiencies, resulting in a mutually beneficial relationship, especially in vitamin B1(thiamin), B3 (niacin), and B7 (biotin) metabolism. These findings provide insights into the role of Alicyclobacillus isolates in geothermal environments and their unique metabolic adaptations to these environments.

2.
Microorganisms ; 10(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35056591

RESUMO

Verrucomicrobiotal methanotrophs are thermoacidophilic methane oxidizers that have been isolated from volcanic and geothermal regions of the world. We used a metagenomic approach that entailed obtaining the whole genome sequence of a verrucomicrobiotal methanotroph from a microbial consortium enriched from samples obtained from Nymph Lake (89.9 °C, pH 2.73) in Yellowstone National Park in the USA. To identify and reconstruct the verrucomicrobiotal genome from Illumina NovaSeq 6000 sequencing data, we constructed a bioinformatic pipeline with various combinations of de novo assembly, alignment, and binning algorithms. Based on the marker gene (pmoA), we identified and assembled the Candidatus Methylacidiphilum sp. YNP IV genome (2.47 Mbp, 2392 ORF, and 41.26% GC content). In a comparison of average nucleotide identity between Ca. Methylacidiphilum sp. YNP IV and Ca. Methylacidiphilum fumariolicum SolV, its closest 16S rRNA gene sequence relative, is lower than 95%, suggesting that Ca. Methylacidiphilum sp. YNP IV can be regarded as a different species. The Ca. Methylacidiphilum sp. YNP IV genome assembly showed most of the key genes for methane metabolism, the CBB pathway for CO2 fixation, nitrogen fixation and assimilation, hydrogenases, and rare earth elements transporter, as well as defense mechanisms. The assembly and reconstruction of a thermoacidophilic methanotroph belonging to the Verrucomicrobiota phylum from a geothermal environment adds further evidence and knowledge concerning the diversity of biological methane oxidation and on the adaptation of this geochemically relevant reaction in extreme environments.

3.
Stem Cell Reports ; 12(2): 245-257, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30639214

RESUMO

The cerebral cortex has expanded in size and complexity in primates, yet the molecular innovations that enabled primate-specific brain attributes remain obscure. We generated cerebral cortex organoids from human, chimpanzee, orangutan, and rhesus pluripotent stem cells and sequenced their transcriptomes at weekly time points for comparative analysis. We used transcript structure and expression conservation to discover gene regulatory long non-coding RNAs (lncRNAs). Of 2,975 human, multi-exonic lncRNAs, 2,472 were structurally conserved in at least one other species and 920 were conserved in all. Three hundred eighty-six human lncRNAs were transiently expressed (TrEx) and many were also TrEx in great apes (46%) and rhesus (31%). Many TrEx lncRNAs are expressed in specific cell types by single-cell RNA sequencing. Four TrEx lncRNAs selected based on cell-type specificity, gene structure, and expression pattern conservation were ectopically expressed in HEK293 cells by CRISPRa. All induced trans gene expression changes were consistent with neural gene regulatory activity.


Assuntos
Diferenciação Celular/genética , Córtex Cerebral/fisiologia , Regulação da Expressão Gênica/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Células HEK293 , Humanos , Organoides/fisiologia , Células-Tronco Pluripotentes/fisiologia , Primatas , Análise de Sequência de RNA , Transcriptoma/genética
4.
Nat Commun ; 9(1): 4908, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464174

RESUMO

Sulfolobus islandicus is a model microorganism in the TACK superphylum of the Archaea, a key lineage in the evolutionary history of cells. Here we report a genome-wide identification of the repertoire of genes essential to S. islandicus growth in culture. We confirm previous targeted gene knockouts, uncover the non-essentiality of functions assumed to be essential to the Sulfolobus cell, including the proteinaceous S-layer, and highlight essential genes whose functions are yet to be determined. Phyletic distributions illustrate the potential transitions that may have occurred during the evolution of this archaeal microorganism, and highlight sets of genes that may have been associated with each transition. We use this comparative context as a lens to focus future research on archaea-specific uncharacterized essential genes that may provide valuable insights into the evolutionary history of cells.


Assuntos
Genes Essenciais , Genoma Arqueal , Sulfolobus/genética , Evolução Biológica , DNA Topoisomerases Tipo I/genética , Teste de Complementação Genética , Glicoproteínas de Membrana/genética , Sulfolobus/ultraestrutura
5.
Nat Commun ; 6: 6925, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25897682

RESUMO

Eukaryotic microalgae hold great promise for the bioproduction of fuels and higher value chemicals. However, compared with model genetic organisms such as Escherichia coli and Saccharomyces cerevisiae, characterization of the complex biology and biochemistry of algae and strain improvement has been hampered by the inefficient genetic tools. To date, many algal species are transformable only via particle bombardment, and the introduced DNA is integrated randomly into the nuclear genome. Here we describe the first nuclear episomal vector for diatoms and a plasmid delivery method via conjugation from Escherichia coli to the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. We identify a yeast-derived sequence that enables stable episome replication in these diatoms even in the absence of antibiotic selection and show that episomes are maintained as closed circles at copy number equivalent to native chromosomes. This highly efficient genetic system facilitates high-throughput functional characterization of algal genes and accelerates molecular phytoplankton research.


Assuntos
Conjugação Genética , Diatomáceas/genética , Escherichia coli/fisiologia , Plasmídeos , DNA/genética , Eletroporação , Vetores Genéticos , Plasmídeos/genética , Polietilenoglicóis , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA